Jindan Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/122283/publications.pdf

Version: 2024-02-01

236925 265206 1,884 42 55 25 citations h-index g-index papers 55 55 55 2650 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomaterialia, 2009, 5, 328-337.	8.3	166
2	Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions. Journal of Materials Chemistry A, 2018, 6, 7014-7020.	10.3	132
3	Gradient biomaterials and their influences on cell migration. Interface Focus, 2012, 2, 337-355.	3.0	126
4	The effect of membrane surface charges on demulsification and fouling resistance during emulsion separation. Journal of Membrane Science, 2018, 563, 126-133.	8.2	82
5	Superhydrophilic carbonaceous-silver nanofibrous membrane for complex oil/water separation and removal of heavy metal ions, organic dyes and bacteria. Journal of Membrane Science, 2020, 614, 118491.	8.2	79
6	Inflammation-targeting polymeric nanoparticles deliver sparfloxacin and tacrolimus for combating acute lung sepsis. Journal of Controlled Release, 2020, 321, 463-474.	9.9	77
7	Controlling the migration behaviors of vascular smooth muscle cells by methoxy poly(ethylene) Tj ETQq1 1 0.784	4314 rgBT 11.4	Overlock 10
8	A correlation study of protein adsorption and cell behaviors on substrates with different densities of PEG chains. Colloids and Surfaces B: Biointerfaces, 2014, 122, 134-142.	5.0	70
9	Gradient immobilization of a cell adhesion RGD peptide on thermal responsive surface for regulating cell adhesion and detachment. Colloids and Surfaces B: Biointerfaces, 2011, 85, 12-18.	5.0	68
10	The fabrication of pH-responsive polymeric layer with switchable surface wettability on cotton fabric for oil/water separation. Materials Letters, 2015, 160, 384-387.	2.6	65
11	Directional cell migration through cell–cell interaction on polyelectrolyte multilayers with swelling gradients. Biomaterials, 2013, 34, 975-984.	11.4	62
12	Self-cleaning pH/thermo-responsive cotton fabric with smart-control and reusable functions for oil/water separation. RSC Advances, 2016, 6, 24076-24082.	3.6	62
13	Modulating the Structure and Properties of Poly(sodium) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 267 Td (Solutions. Langmuir, 2012, 28, 193-199.	(4-styrenes 3.5	sulfonate)/Fol
14	Superhydrophilic and mechanical robust PVDF nanofibrous membrane through facile interfacial Span 80 welding for excellent oil/water separation. Applied Surface Science, 2019, 485, 179-187.	6.1	44
15	The Design of Biodegradable Microcarriers for Induced Cell Aggregation. Macromolecular Bioscience, 2010, 10, 156-163.	4.1	43
16	Microscale control over collagen gradient on poly(l-lactide) membrane surface for manipulating chondrocyte distribution. Colloids and Surfaces B: Biointerfaces, 2008, 67, 210-215.	5.0	39
17	Eco-friendly surface modification on polyester fabrics by esterase treatment. Applied Surface Science, 2014, 295, 150-157.	6.1	37
18	Influences of surface chemistry and swelling of salt-treated polyelectrolyte multilayers on migration of smooth muscle cells. Journal of the Royal Society Interface, 2012, 9, 3455-3468.	3.4	34

#	Article	IF	CITATIONS
19	Solvent-Directed Assembly of a Pyridinium-Tailored Methyl Oleanolate Amphiphile: Stepwise Growth of Microrods and Nanofibers. Langmuir, 2016, 32, 1685-1692.	3.5	34
20	Underwater oleophobic PTFE membrane for efficient and reusable emulsion separation and the influence of surface wettability and pore size. Separation and Purification Technology, 2017, 189, 32-39.	7.9	32
21	Preparation of Zwitterionic Polymer-Functionalized Cotton Fabrics and the Performance of Anti-Biofouling and Long-Term Biofilm Resistance. Colloids and Interface Science Communications, 2018, 24, 98-104.	4.1	32
22	Biomimetic modification of chitosan with covalently grafted lactose and blended heparin for improvement of <i>in vitro</i> cellular interaction. Polymers for Advanced Technologies, 2008, 19, 15-23.	3.2	31
23	A pH and hyaluronidase dual-responsive multilayer-based drug delivery system for resisting bacterial infection. Applied Surface Science, 2020, 527, 146806.	6.1	29
24	Organogels of triterpenoid–tripeptide conjugates: encapsulation of dye molecules and basicity increase associated with aggregation. RSC Advances, 2013, 3, 23548.	3.6	28
25	Self-assembly of sodium glycyrrhetinate into a hydrogel: characterisation and properties. RSC Advances, 2013, 3, 24906.	3.6	27
26	Charge-transfer interaction mediated organogels from $18\hat{l}^2$ -glycyrrhetinic acid appended pyrene. Beilstein Journal of Organic Chemistry, 2013, 9, 2877-2885.	2.2	24
27	Acidity-triggered charge-reversible multilayers for construction of adaptive surfaces with switchable bactericidal and bacteria-repelling functions. Journal of Materials Chemistry B, 2018, 6, 7462-7470.	5.8	24
28	Unidirectional migration of single smooth muscle cells under the synergetic effects of gradient swelling cue and parallel groove patterns. Colloids and Surfaces B: Biointerfaces, 2013, 111, 1-6.	5.0	23
29	Fabrication of highly underwater oleophobic textiles through poly(vinyl alcohol) crosslinking for oil/water separation: the effect of surface wettability and textile type. Journal of Materials Science, 2017, 52, 1194-1202.	3.7	22
30	One-Step Fabrication of a Micro/Nanosphere-Coordinated Dual Stimulus-Responsive Nanofibrous Membrane for Intelligent Antifouling and Ultrahigh Permeability of Viscous Water-in-Oil Emulsions. ACS Applied Materials & Diterfaces, 2021, 13, 27635-27644.	8.0	22
31	Covalently immobilized gelatin gradients within three-dimensional porous scaffolds. Science Bulletin, 2009, 54, 3174-3180.	1.7	21
32	Tuning the aggregation mode to induce different chiralities in organogels of mono- and bis-triterpenoid derivatives and the preparation of gold nanoparticles for use as a template. New Journal of Chemistry, 2014, 38, 6050-6056.	2.8	20
33	Conjugation of Basic Fibroblast Growth Factor on a Heparin Gradient for Regulating the Migration of Different Types of Cells. Bioconjugate Chemistry, 2013, 24, 1302-1313.	3.6	18
34	Water tuned nano/micro-structures in a redox-responsive supramolecular gel. RSC Advances, 2014, 4, 63539-63543.	3.6	17
35	A density gradient of basic fibroblast growth factor guides directional migration of vascular smooth muscle cells. Colloids and Surfaces B: Biointerfaces, 2014, 117, 290-295.	5.0	17
36	Confined Channels Induced Coalescence Demulsification and Slippery Interfaces Constructed Fouling Resist-Release for Long-Lasting Oil/Water Separation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30224-30234.	8.0	17

#	Article	IF	CITATIONS
37	Surface-grafted block copolymer brushes with continuous composition gradients of poly(poly(ethylene glycol)-monomethacrylate) and poly(N-isopropylacrylamide). Science China Chemistry, 2011, 54, 334-342.	8.2	16
38	Directional migration of vascular smooth muscle cells guided by synergetic surface gradient and chemical pattern of poly(ethylene glycol) brushes. Journal of Bioactive and Compatible Polymers, 2013, 28, 605-620.	2.1	12
39	Multifunctional fibrous wound dressings for refractory wound healing. Journal of Polymer Science, 2022, 60, 2191-2212.	3.8	12
40	Polyelectrolyte Multilayer Patterns Created by Capillary Force and Their Impact on Cell Migration. Chinese Journal of Chemistry, 2014, 32, 66-72.	4.9	10
41	Thermo-responsive poly($\langle i\rangle N\langle i\rangle$ -isopropylacrylamide) grafted polyester textiles with switchable surface wettability. Textile Reseach Journal, 2016, 86, 677-684.	2.2	10
42	Cooperative supramolecular helical assembly of a pyridinium-tailored methyl glycyrrhetate. Soft Matter, 2016, 12, 8979-8982.	2.7	9
43	Ag@polyDOPA-b-polysarcosine hybrid nanoparticles with antimicrobial properties from in-situ reduction and NTA polymerization. European Polymer Journal, 2019, 121, 109269.	5.4	9
44	Influence of Nonionic Surfactant on Hydrolysis of Vinyl Sulfone Reactive Dye. Journal of Surfactants and Detergents, 2015, 18, 1127-1135.	2.1	8
45	pH-Sensitive Membranes with Smart Cleaning Capability for Efficient Emulsion Separation and Pollutant Removal. Membranes, 2021, 11, 193.	3.0	8
46	Surface Modification of Polyamide 6,6 Fabrics with an Alkaline Protease – Subtilisin. Journal of Engineered Fibers and Fabrics, 2016, 11, 155892501601100.	1.0	7
47	Polyacrylamide-Modified Polyester Fabric with Easy-Cleaning for Efficient Oil/Water Separation. AATCC Journal of Research, 2018, 5, 1-6.	0.6	7
48	Melt electrowritten poly(caprolactone) lattices incorporated with silver nanoparticles for directional water transport antibacterial wound dressings. New Journal of Chemistry, 2022, 46, 13565-13574.	2.8	6
49	Gram-scale synthesis of splat-shaped Ag–TiO ₂ nanocomposites for enhanced antimicrobial properties. Beilstein Journal of Nanotechnology, 2020, 11, 1119-1125.	2.8	5
50	Effect of the Chain Density and Chain Length on the pH-Responsibility of Poly(acrylic acid) Grafted Cotton. Journal of Nanoscience and Nanotechnology, 2016, 16, 5689-5695.	0.9	4
51	Study of Crystal Violet Hueing Dye Deposition on Fabrics During Home Laundry. Journal of Surfactants and Detergents, 2016, 19, 795-801.	2.1	2
52	A facile preparation of cotton fabric containing hybrid poly(sodium methacrylate)/silver nanoparticles for oil removal and water disinfection. Textile Reseach Journal, 2019, 89, 5096-5107.	2.2	2
53	Synergistic bactericidal nanofibers with photothermal controlled release of antibiotics triggered by near infrared. Materials Letters, 2021, 302, 130423.	2.6	2
54	Methyl 1,2â€Shift Rearrangement on Câ€ring and Decarboxylation at C28 of Oleanolic Acid Derivatives. Chinese Journal of Chemistry, 2014, 32, 133-136.	4.9	1

#	Article	IF	CITATIONS
55	Study of Different Hueing Dyes Deposition on Fabrics during Home Laundry. Tenside, Surfactants, Detergents, 2016, 53, 561-567.	1.2	O