
Peiliang Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1222730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characteristics and production of semi-dry lightweight concrete with cold bonded aggregates made from recycling concrete slurry waste (CSW) and municipal solid waste incineration bottom ash (MSWIBA). Journal of Building Engineering, 2022, 45, 103434.	3.4	7
2	Improving the bonding capacity of recycled concrete aggregate by creating a reactive shell with aqueous carbonation. Construction and Building Materials, 2022, 315, 125733.	7.2	13
3	Phase assemblance evolution during wet carbonation of recycled concrete fines. Cement and Concrete Research, 2022, 154, 106733.	11.0	55
4	Corrosion behavior of carbon steel in chloride-contaminated ultra-high-performance cement pastes. Cement and Concrete Composites, 2022, 128, 104443.	10.7	13
5	Mix design and performance of lightweight ultra high-performance concrete. Materials and Design, 2022, 216, 110553.	7.0	35
6	Upcycling sintering red mud waste for novel superfine composite mineral admixture and CO2 sequestration. Cement and Concrete Composites, 2022, 129, 104497.	10.7	22
7	Reinforcement of Broken Coal Rock Using Ultrafine Sulfoaluminate Cement–Based Grouting Materials. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	8
8	Effect and Mechanism of Superplasticizers on Performance of Ultrafine Sulfoaluminate Cement-Based Grouting Materials. Advances in Materials Science and Engineering, 2022, 2022, 1-11.	1.8	1
9	Carbonation-hardening properties and ITZ microstructure of low-calcium CO2 sequestration binder mortar. Construction and Building Materials, 2022, 336, 127589.	7.2	17
10	Strategy for preventing explosive spalling and enhancing material efficiency of lightweight ultra high-performance concrete. Cement and Concrete Research, 2022, 158, 106842.	11.0	22
11	Effects of sodium doping on carbonation behavior of α-CS. Cement and Concrete Composites, 2022, 131, 104607.	10.7	8
12	Preparation aragonite whisker-rich materials by wet carbonation of cement: Towards yielding micro-fiber reinforced cement and sequestrating CO2. Cement and Concrete Research, 2022, 159, 106891.	11.0	38
13	Mechanism of carbonating recycled concrete fines in aqueous environment: The particle size effect. Cement and Concrete Composites, 2022, 133, 104655.	10.7	19
14	Revealing the substitution preference of zinc in ordinary Portland cement clinker phases: A study from experiments and DFT calculations. Journal of Hazardous Materials, 2021, 409, 124504.	12.4	49
15	Conceptual design and performance evaluation of high strength pervious concrete. Construction and Building Materials, 2021, 269, 121342.	7.2	21
16	Utilization of CO2 cured CSW-MSWIBA cold bonded aggregate into lightweight concrete products for masonry units. Construction and Building Materials, 2021, 276, 122203.	7.2	7
17	A comparison of liquid-solid and gas-solid accelerated carbonation for enhancement of recycled concrete aggregate. Cement and Concrete Composites, 2021, 118, 103988.	10.7	82
18	Probing the exact form and doping preference of magnesium in ordinary Portland cement clinker phases: A study from experiments and DFT simulations. Cement and Concrete Research, 2021, 144, 106420.	11.0	51

PEILIANG SHEN

#	Article	IF	CITATIONS
19	Mechanisms on Accelerating Hydration of Alite Mixed with Inorganic Salts in Seawater and Characteristics of Hydration Products. ACS Sustainable Chemistry and Engineering, 2021, 9, 10479-10490.	6.7	16
20	Development and characteristics of ultra high-performance lightweight cementitious composites (UHP-LCCs). Cement and Concrete Research, 2021, 145, 106462.	11.0	49
21	Enhanced toughness of ultra-fine sulphoaluminate cement-based hybrid grouting materials by incorporating in-situ polymerization of acrylamide. Construction and Building Materials, 2021, 292, 123421.	7.2	30
22	Enhanced carbonation reactivity of wollastonite by rapid cooling process: Towards an ultra-low calcium CO2 sequestration binder. Construction and Building Materials, 2021, 299, 124336.	7.2	18
23	Early-age and microstructural properties of glass powder blended cement paste: Improvement by seawater. Cement and Concrete Composites, 2021, 122, 104165.	10.7	36
24	Fast enhancement of recycled fine aggregates properties by wet carbonation. Journal of Cleaner Production, 2021, 313, 127867.	9.3	20
25	Utilization of municipal solid waste incineration bottom ash (IBA) aggregates in high-strength pervious concrete. Resources, Conservation and Recycling, 2021, 174, 105736.	10.8	30
26	Development of high performance lightweight concrete using ultra high performance cementitious composite and different lightweight aggregates. Cement and Concrete Composites, 2021, 124, 104277.	10.7	45
27	Insights on Substitution Preference of Pb Ions in Sulfoaluminate Cement Clinker Phases. Materials, 2021, 14, 44.	2.9	10
28	An alternative method for performance improvement of ultra-high performance concrete by internal curing: Role of physicochemical properties of saturated lightweight fine aggregate. Construction and Building Materials, 2021, 312, 125373.	7.2	28
29	Development of high-ferrite cement: Toward green cement production. Journal of Cleaner Production, 2021, 327, 129487.	9.3	23
30	Improvement of the Hydration Kinetics of High Ferrite Cement: Synergic Effect of Gypsum and C ₃ S–C ₄ AF Systems. ACS Sustainable Chemistry and Engineering, 2021, 9, 15127-15137.	6.7	7
31	Effect of Nano-Si3N4 on the Mechanical Properties of Cement-Based Materials. Crystals, 2021, 11, 1556.	2.2	4
32	Investigation on expansion effect of the expansive agents in ultra-high performance concrete. Cement and Concrete Composites, 2020, 105, 103425.	10.7	95
33	Water desorption characteristics of saturated lightweight fine aggregate in ultra-high performance concrete. Cement and Concrete Composites, 2020, 106, 103456.	10.7	45
34	Development of high-strength pervious concrete incorporated with high percentages of waste glass. Cement and Concrete Composites, 2020, 114, 103790.	10.7	43
35	Feasible use of municipal solid waste incineration bottom ash in ultra-high performance concrete. Cement and Concrete Composites, 2020, 114, 103814.	10.7	49
36	Expansive ultra-high performance concrete for concrete-filled steel tube applications. Cement and Concrete Composites, 2020, 114, 103813.	10.7	22

PEILIANG SHEN

#	Article	IF	CITATIONS
37	Improving the Mechanical Properties of Sulfoaluminate Cement-Based Grouting Material by Incorporating Limestone Powder for a Double Fluid System. Materials, 2020, 13, 4854.	2.9	8
38	Experimental and numerical study on the compressive behavior of micro-expansive ultra-high-performance concrete-filled steel tube columns. Construction and Building Materials, 2020, 254, 119150.	7.2	40
39	Effect of water-to-binder ratio on the properties of CSA cement-based grouting materials with LiAl-LDH. Advanced Composites Letters, 2020, 29, 2633366X2090887.	1.3	6
40	Microstructure and Properties of Sulfoaluminate Cement-Based Grouting Materials: Effect of Calcium Sulfate Variety. Advances in Materials Science and Engineering, 2020, 2020, 1-8.	1.8	4
41	Synergetic recycling of waste glass and recycled aggregates in cement mortars: Physical, durability and microstructure performance. Cement and Concrete Composites, 2020, 113, 103632.	10.7	53
42	Effect of nano-SnO ₂ on early-age hydration of Portland cement paste. Advances in Mechanical Engineering, 2019, 11, 168781401985194.	1.6	7
43	Sustainable reuse of waste glass and incinerated sewage sludge ash in insulating building products: Functional and durability assessment. Journal of Cleaner Production, 2019, 236, 117635.	9.3	51
44	The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultra-high performance concrete. Cement and Concrete Research, 2019, 118, 1-13.	11.0	139
45	Effects of Aluminum Sulfate and Quicklime/Fluorgypsum Ratio on the Properties of Calcium Sulfoaluminate (CSA) Cement-Based Double Liquid Grouting Materials. Materials, 2019, 12, 1222.	2.9	33
46	Revealing the Microstructure Evolution and Carbonation Hardening Mechanism of β-C2S Pastes by Backscattered Electron Images. Materials, 2019, 12, 1561.	2.9	15
47	Microstructure of β-Dicalcium Silicate after Accelerated Carbonation. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 122-126.	1.0	10
48	Study on the hydration of young concrete based on dielectric property measurement. Construction and Building Materials, 2019, 196, 354-361.	7.2	26
49	Fabrication and performance of a polyurethane hybrid composite with waste red mud. Polymer Composites, 2019, 40, 2424-2431.	4.6	8
50	Experimental investigation on the autogenous shrinkage of steam cured ultra-high performance concrete. Construction and Building Materials, 2018, 162, 512-522.	7.2	78
51	Influence of superfine ettringite on the properties of sulphoaluminate cement-based grouting materials. Construction and Building Materials, 2018, 166, 723-731.	7.2	55
52	Polyurethane/Red Mud Composites with Flexibility, Stretchability, and Flame Retardancy for Grouting. Polymers, 2018, 10, 906.	4.5	14
53	Flexible and stretchable polyurethane/waterglass grouting material. Construction and Building Materials, 2017, 138, 240-246.	7.2	80
54	Performance and hydration study of ultra-fine sulfoaluminate cement-based double liquid grouting material. Construction and Building Materials, 2017, 132, 262-270.	7.2	61

PEILIANG SHEN

#	Article	IF	CITATIONS
55	Effect of aggregate exposing and curing agent on the performance of exposed aggregate concrete. Construction and Building Materials, 2017, 156, 675-683.	7.2	12
56	Hydration of quaternary phase-gypsum system. Construction and Building Materials, 2017, 152, 145-153.	7.2	14
57	Efficiency of metakaolin in steam cured high strength concrete. Construction and Building Materials, 2017, 152, 357-366.	7.2	56
58	Effects of LiAl-layered double hydroxides on early hydration of calcium sulphoaluminate cement paste. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 1101-1107.	1.0	13
59	Sintered bayer red mud based ceramic bricks: Microstructure evolution and alkalis immobilization mechanism. Ceramics International, 2017, 43, 13004-13008.	4.8	45
60	Influence of LiAl-layered double hydroxides with 3D micro-nano structures on the properties of calcium sulphoaluminate cement clinker. Cement and Concrete Composites, 2016, 70, 15-23.	10.7	46
61	Hydration monitoring and strength prediction of cement-based materials based on the dielectric properties. Construction and Building Materials, 2016, 126, 179-189.	7.2	41
62	Preparation, characterization, and properties of silicate/polyurethaneurea composites based on dipropylene glycol dibenzoate. Polymer Composites, 2016, 37, 37-43.	4.6	8
63	Effect of MXene (Nano-Ti3C2) on Early-Age Hydration of Cement Paste. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	7
64	An active dealkalization of red mud with roasting and water leaching. Journal of Hazardous Materials, 2015, 286, 85-91.	12.4	107
65	Preparation of new cementitious system using fly ash and dehydrated autoclaved aerated concrete. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 726-732.	1.0	15
66	Effect of rubber particle modification on properties of rubberized concrete. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 763-768.	1.0	47
67	Microstructural Development of Hydrating Portland Cement Paste at Early Ages Investigated with Non-destructive Methods and Numerical Simulation. Journal of Nondestructive Evaluation, 2013, 32, 228-237.	2.4	36
68	Adsorption of superplasticizers in fly ash blended cement pastes and its rheological effects. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 773-778.	1.0	9
69	Determination of water content in fresh concrete mix based on relative dielectric constant measurement. Construction and Building Materials, 2012, 34, 306-312.	7.2	46