Xiaoyang Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/122248/publications.pdf

Version: 2024-02-01

430874 752698 1,356 20 18 citations h-index papers

g-index 20 20 20 1349 docs citations times ranked citing authors all docs

20

#	Article	IF	Citations
1	A novel lanthanum-modified copper tailings adsorbent for phosphate removal from water. Chemosphere, 2021, 281, 130779.	8.2	20
2	Degradation kinetics of target compounds and correlations with spectral indices during UV/H2O2 post-treatment of biologically treated acrylonitrile wastewater. Chemosphere, 2020, 243, 125384.	8.2	12
3	Development of a highly efficient electrochemical flow-through anode based on inner in-site enhanced TiO2-nanotubes array. Environment International, 2020, 140, 105813.	10.0	40
4	Development of a Three-Dimensional Electrochemical System Using a Blue TiO ₂ /SnO ₂ –Sb ₂ O ₃ Anode for Treating Low-lonic-Strength Wastewater. Environmental Science & Dechnology, 2019, 53, 13784-13793.	10.0	45
5	Kinetic, mechanism and mass transfer impact on electrochemical oxidation of MIT using Ti-enhanced nanotube arrays/SnO2-Sb anode. Electrochimica Acta, 2019, 323, 134779.	5.2	54
6	Electrochemical degradation of methylisothiazolinone by using Ti/SnO2-Sb2O3/ \hat{l}_{\pm} , \hat{l}^2 -PbO2 electrode: Kinetics, energy efficiency, oxidation mechanism and degradation pathway. Chemical Engineering Journal, 2019, 374, 626-636.	12.7	133
7	Electrochemical degradation of ciprofloxacin on BDD anode using a differential column batch reactor: mechanisms, kinetics and pathways. Environmental Science and Pollution Research, 2019, 26, 17740-17750.	5 . 3	33
8	Oxidation Mechanisms of the UV/Free Chlorine Process: Kinetic Modeling and Quantitative Structure Activity Relationships. Environmental Science & Envi	10.0	70
9	Oxidation of Microcystin-LR via Activation of Peroxymonosulfate Using Ascorbic Acid: Kinetic Modeling and Toxicity Assessment. Environmental Science &	10.0	114
10	Closed-Loop Electrochemical Recycling of Spent Copper(II) from Etchant Wastewater Using a Carbon Nanotube Modified Graphite Felt Anode. Environmental Science & Environmental Science & 2, 5940-5948.	10.0	53
11	Distribution and sources of polycyclic aromatic hydrocarbons and phthalic acid esters in water and surface sediment from the Three Gorges Reservoir. Journal of Environmental Sciences, 2018, 69, 271-280.	6.1	42
12	Impact of Chloride Ions on UV/H ₂ O ₂ and UV/Persulfate Advanced Oxidation Processes. Environmental Science & Environmental Science	10.0	178
13	Electrochemical oxidation of Microcystis aeruginosa using a Ti/RuO2 anode: contributions of electrochemically generated chlorines and hydrogen peroxide. Environmental Science and Pollution Research, 2018, 25, 27924-27934.	5 . 3	10
14	Electrocatalytic dechlorination of halogenated antibiotics via synergistic effect of chlorine-cobalt bond and atomic H*. Journal of Hazardous Materials, 2018, 358, 294-301.	12.4	44
15	Antimony Removal from Aqueous Solution Using Novel α-MnO ₂ Nanofibers: Equilibrium, Kinetic, and Density Functional Theory Studies. ACS Sustainable Chemistry and Engineering, 2017, 5, 2255-2264.	6.7	85
16	Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact. Applied Catalysis B: Environmental, 2017, 203, 515-525.	20.2	212
17	Electrochemical oxidation of cinnamic acid with Mo modified PbO 2 electrode: Electrode characterization, kinetics and degradation pathway. Chemical Engineering Journal, 2016, 289, 239-246.	12.7	100
18	Fabrication and Electrochemical Treatment Application of an Al-Doped PbO ₂ Electrode with High Oxidation Capability, Oxygen Evolution Potential and Reusability. Journal of the Electrochemical Society, 2015, 162, E258-E262.	2.9	30

#	Article	IF	CITATIONS
19	Bioregeneration of Spent Anion Exchange Resin for Treatment of Nitrate in Water. Environmental Science & Environmental Science	10.0	35
20	Endoplasmic reticulum stress in murine liver and kidney exposed to microcystin-LR. Toxicon, 2010, 56, 1334-1341.	1.6	46