Guoyuan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1222332/publications.pdf

Version: 2024-02-01

		471509	610901
80	931	17	24
papers	citations	h-index	g-index
81	81	81	528
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Hybrid Approach to Motion Prediction for Ship Docking—Integration of a Neural Network Model Into the Ship Dynamic Model. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	4.7	46
2	Neural-network-based modelling and analysis for time series prediction of ship motion. Ship Technology Research, 2017, 64, 30-39.	2.5	41
3	A Novel Densely Connected Convolutional Neural Network for Sea-State Estimation Using Ship Motion Data. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 5984-5993.	4.7	41
4	Data-driven uncertainty and sensitivity analysis for ship motion modeling in offshore operations. Ocean Engineering, 2019, 179, 261-272.	4.3	40
5	Fault Detection With LSTM-Based Variational Autoencoder for Maritime Components. IEEE Sensors Journal, 2021, 21, 21903-21912.	4.7	36
6	Dead Reckoning of Dynamically Positioned Ships: Using an Efficient Recurrent Neural Network. IEEE Robotics and Automation Magazine, 2019, 26, 39-51.	2.0	35
7	An efficient neural-network based approach to automatic ship docking. Ocean Engineering, 2019, 191, 106514.	4.3	34
8	Big data and industrial Internet of Things for the maritime industry in Northwestern Norway. , 2015, , .		31
9	Temporal Attention Convolutional Neural Network for Estimation of Icing Probability on Wind Turbine Blades. IEEE Transactions on Industrial Electronics, 2022, 69, 6371-6380.	7.9	27
10	Development of adaptive locomotion of a caterpillar-like robot based on a sensory feedback CPG model. Advanced Robotics, 2014, 28, 389-401.	1.8	24
11	Locomotion control of a biomimetic robotic fish based on closed loop sensory feedback CPG model. Journal of Marine Engineering and Technology, 2021, 20, 125-137.	4.1	22
12	From Natural Complexity to Biomimetic Simplification: The Realization of Bionic Fish Inspired by the Cownose Ray. IEEE Robotics and Automation Magazine, 2019, 26, 27-38.	2.0	21
13	A Neural-Network-Based Sensitivity Analysis Approach for Data-Driven Modeling of Ship Motion. IEEE Journal of Oceanic Engineering, 2020, 45, 451-461.	3.8	21
14	A Multilevel Convolutional Recurrent Neural Network for Blade Icing Detection of Wind Turbine. IEEE Sensors Journal, 2021, 21, 20311-20323.	4.7	21
15	Toward Time-Optimal Trajectory Planning for Autonomous Ship Maneuvering in Close-Range Encounters. IEEE Journal of Oceanic Engineering, 2020, 45, 1219-1234.	3.8	19
16	Parameter identification of ship manoeuvring model under disturbance using support vector machine method. Ships and Offshore Structures, 2021, 16, 13-21.	1.9	19
17	Analysis and Design of Asymmetric Oscillation for Caterpillar-Like Locomotion. Journal of Bionic Engineering, 2015, 12, 190-203.	5.0	18
18	Online learning control of surface vessels for fine trajectory tracking. Journal of Marine Science and Technology, 2016, 21, 251-260.	2.9	18

#	Article	IF	Citations
19	A Neural Network Approach to Control Allocation of Ships for Dynamic Positioning. IFAC-PapersOnLine, 2018, 51, 128-133.	0.9	17
20	Visual Attention Assessment for Expert-in-the-Loop Training in a Maritime Operation Simulator. IEEE Transactions on Industrial Informatics, 2020, 16, 522-531.	11.3	17
21	An approach for adaptive limbless locomotion using a cpg-based reflex mechanism. Journal of Bionic Engineering, 2014, 11, 389-399.	5.0	16
22	Modeling and Analysis of Motion Data from Dynamically Positioned Vessels for Sea State Estimation. , 2019, , .		16
23	Incorporating Approximate Dynamics Into Data-Driven Calibrator: A Representative Model for Ship Maneuvering Prediction. IEEE Transactions on Industrial Informatics, 2022, 18, 1781-1789.	11.3	16
24	A Survey of Eye Tracking in Automobile and Aviation Studies: Implications for Eye-Tracking Studies in Marine Operations. IEEE Transactions on Human-Machine Systems, 2021, 51, 87-98.	3.5	16
25	Fault Prognostics Using LSTM Networks: Application to Marine Diesel Engine. IEEE Sensors Journal, 2021, 21, 25986-25994.	4.7	16
26	Coupling of dynamic reaction forces of a heavy load crane and ship motion responses in waves. Ships and Offshore Structures, 2021, 16, 58-67.	1.9	15
27	Co-simulation as a Fundamental Technology for Twin Ships. Modeling, Identification and Control, 2020, 41, 297-311.	1.1	15
28	A Deep Learning Approach to Detect and Isolate Thruster Failures for Dynamically Positioned Vessels Using Motion Data. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	4.7	13
29	Impacts of COVID-19 on Ship Behaviours in Port Area: An AIS Data-Based Pattern Recognition Approach. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 25127-25138.	8.0	13
30	Analysis and modeling of sensor data for ship motion prediction. , 2016, , .		12
31	Bionic Flapping Pectoral Fin with Controllable Spatial Deformation. Journal of Bionic Engineering, 2019, 16, 916-930.	5.0	12
32	An Uncertainty-Aware Hybrid Approach for Sea State Estimation Using Ship Motion Responses. IEEE Transactions on Industrial Informatics, 2022, 18, 891-900.	11.3	12
33	Navigating Patterns Analysis for Onboard Guidance Support in Crossing Collision-Avoidance Operations. IEEE Intelligent Transportation Systems Magazine, 2022, 14, 62-77.	3.8	12
34	A novel mechanism for caterpillar-like locomotion using asymmetric oscillation. , 2011, , .		11
35	Simplifying Neural Network Based Model for Ship Motion Prediction: A Comparative Study of Sensitivity Analysis., 2017,,.		11
36	An Effective Ship Control Strategy for Collision-Free Maneuver Toward a Dock. IEEE Access, 2020, 8, 110140-110152.	4.2	11

#	Article	IF	CITATIONS
37	Investigating an Integrated Sensor Fusion System for Mental Fatigue Assessment for Demanding Maritime Operations. Sensors, 2020, 20, 2588.	3.8	11
38	A Novel Channel and Temporal-Wise Attention in Convolutional Networks for Multivariate Time Series Classification. IEEE Access, 2020, 8, 212247-212257.	4.2	10
39	Sailing status recognition to enhance safety awareness and path routing for a commuter ferry. Ships and Offshore Structures, 2021, 16, 1-12.	1.9	9
40	Data-driven Modeling of Ship Motion Prediction Based on Support Vector Regression., 2017,,.		9
41	A bio-inspired swimming robot for marine aquaculture applications: From concept-design to simulation. , $2016, \ldots$		8
42	Data-Driven Modeling for Transferable Sea State Estimation Between Marine Systems. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 2561-2571.	8.0	8
43	Incorporation of Ship Motion Prediction into Active Heave Compensation for Offshore Crane Operation. , 2020, , .		8
44	Data integration and visualisation for demanding marine operations. , 2016, , .		7
45	Flexible Modular Robotic Simulation Environment For Research And Education. , 2012, , .		7
46	A Multiple-Output Hybrid Ship Trajectory Predictor With Consideration for Future Command Assumption. IEEE Sensors Journal, 2021, 21, 27124-27135.	4.7	7
47	Directional wave spectrum estimation with ship motion responses using adversarial networks. Marine Structures, 2022, 83, 103159.	3.8	7
48	Analysis and evaluation of eye behavior for marine operation training - A pilot study. Journal of Eye Movement Research, 2019, 12, .	0.8	6
49	Caterpillar-Like Climbing Method Incorporating a Dual-Mode Optimal Controller. IEEE Transactions on Automation Science and Engineering, 2015, 12, 1492-1503.	5.2	5
50	A Co-operative Hybrid Model For Ship Motion Prediction. Modeling, Identification and Control, 2021, 42, 17-26.	1.1	5
51	SpectralSeaNet: Spectrogram and Convolutional Network-based Sea State Estimation. , 2020, , .		5
52	An Enhanced Lightweight Convolutional Neural Network for Ship Detection in Maritime Surveillance System. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 5811-5825.	4.9	5
53	Data-driven sea state estimation for vessels using multi-domain features from motion responses. , 2021, , .		4
54	Towards data-driven identification and analysis of propeller ventilation. , 2016, , .		3

#	Article	IF	CITATIONS
55	Hydrodynamic development of a bionic pectoral fin for undersea monitoring platform. Ships and Offshore Structures, 2019, 14, 91-99.	1.9	3
56	Development of a vision-based target exploration system for snake-like robots in structured environments. International Journal of Advanced Robotic Systems, 2020, 17, 172988142093614.	2.1	3
57	Development of A Manufacturing System for Gear Assembly using Collaborative Robots., 2021,,.		3
58	Design of neural circuit for sidewinding of snake-like robots. , 2014, , .		2
59	Hierarchical control of marine vehicles for autonomous manoeuvring in offshore operations. Ship Technology Research, 2015, 62, 72-80.	2.5	2
60	An ultra-high-speed FPGA based digital correlation processor. IEICE Electronics Express, 2015, 12, 20150214-20150214.	0.8	2
61	Integration of sensory feedback into CPG model for locomotion control of caterpillar-like robot. , 2015, , .		2
62	Towards a virtual prototyping framework for ship maneuvering in offshore operations., 2016,,.		2
63	A B $ ilde{A}$ ©zier Curve Based Ship Trajectory Optimization for Close-Range Maritime Operations. , 2017, , .		2
64	Integration of visual focus into marine operation simulator for behavior observation and analysis. , 2017, , .		2
65	Virtual prototyping: a case study of positioning systems for drilling operations in the Barents Sea. Ships and Offshore Structures, 2019, 14, 364-373.	1.9	2
66	A Step-wise Feature Selection Scheme for a Prognostics and Health Management System in Autonomous Ferry Crossing Operation. , 2019, , .		2
67	A Decentralized Sensor Fusion Approach to Human Fatigue Monitoring in Maritime Operations. , 2019, ,		2
68	A sensitivity quantification approach to significance analysis of thrusters in dynamic positioning operations. Ocean Engineering, 2021, 223, 108659.	4.3	2
69	A Human-Expertise Based Statistical Method for Analysis of Log Data from a Commuter Ferry. , 2020, , .		2
70	Development of Onboard Decision Supporting System for Ship Docking Operations. , 2020, , .		2
71	A Physics-Data Co-Operative Ship Dynamic Model for a Docking Operation. IEEE Sensors Journal, 2022, 22, 11173-11183.	4.7	2
72	Efficient kinematic solution to a multi-robot with serial and parallel mechanisms. , 2010, , .		1

#	Article	IF	CITATIONS
73	A real-time SAR extended object simulator based on FPGA. , 2016, , .		1
74	Concept design and simulation of a water proofing modular robot for amphibious locomotion. , 2017, , .		1
75	Multi-ship Collision Avoidance Control Strategy in Close-quarters Situations: a Case Study of Dover Strait Ferry Maneuvering. , 2020, , .		1
76	A screw-less solution for snake-like robot assembly and sensor integration. , 2017, , .		0
77	Cryptanalysis of a generic oneâ€round key exchange protocol with strong security. IET Information Security, 2018, 12, 71-78.	1.7	O
78	A SVM-based Sensitivity Analysis Approach for Data-Driven Modeling of Ship Motion. , 2018, , .		0
79	A Data-Driven Sensitivity Analysis Approach for Dynamically Positioned Vessels. , 2018, , .		O
80	An Effective Model-based Thruster Failure Detection Method for Dynamically Positioned Ships. , 2020, , .		O