Jean-Michel Rabanel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1222176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tailoring PEGylated nanoparticle surface modulates inflammatory response in vascular endothelial cells. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 174, 155-166.	4.3	3
2	Therapeutic nanotechnologies for Alzheimer's disease: A critical analysis of recent trends and findings. Advanced Drug Delivery Reviews, 2022, 187, 114397.	13.7	11
3	(In)stability of ligands at the surface of inorganic nanoparticles: A forgotten question in nanomedicine?. Nano Today, 2022, 45, 101516.	11.9	10
4	Nanoparticle shell structural cues drive in vitro transport properties, tissue distribution and brain accessibility in zebrafish. Biomaterials, 2021, 277, 121085.	11.4	7
5	Overcoming the Brain Barriers: From Immune Cells to Nanoparticles. Trends in Pharmacological Sciences, 2020, 41, 42-54.	8.7	33
6	Transport of PEGylated-PLA nanoparticles across a blood brain barrier model, entry into neuronal cells and in vivo brain bioavailability. Journal of Controlled Release, 2020, 328, 679-695.	9.9	45
7	Periphery-confined particulate systems for the management of neurodegenerative diseases and toxicity: Avoiding the blood-brain-barrier challenge. Journal of Controlled Release, 2020, 322, 286-299.	9.9	9
8	Spontaneous shrinking of soft nanoparticles boosts their diffusion in confined media. Nature Communications, 2019, 10, 4294.	12.8	26
9	Nanoparticle heterogeneity: an emerging structural parameter influencing particle fate in biological media?. Nanoscale, 2019, 11, 383-406.	5.6	83
10	Subtle and unexpected role of PEG in tuning the penetration mechanisms of PLA-based nano-formulations into intact and impaired skin. International Journal of Pharmaceutics, 2019, 563, 79-90.	5.2	12
11	Nanotechnology at the Rescue of Neurodegenerative Diseases: Tools for Early Diagnostic. , 2019, , 19-48.		1
12	Unified Scaling of the Structure and Loading of Nanoparticles Formed by Diffusion-Limited Coalescence. Langmuir, 2018, 34, 5772-5780.	3.5	18
13	Effect of surface chemistry of polymeric nanoparticles on cutaneous penetration of cholecalciferol. International Journal of Pharmaceutics, 2018, 553, 120-131.	5.2	19
14	Functional polylactide via ring-opening copolymerisation with allyl, benzyl and propargyl glycidyl ethers. European Polymer Journal, 2017, 90, 344-353.	5.4	25
15	Influence of Hydrophobic Dendrimer Core Structure on the Itraconazole Encapsulation Efficiency. Macromolecular Chemistry and Physics, 2015, 216, 2356-2367.	2.2	6
16	Synthesis and Evaluation of Symmetrically PEGâ€Decorated Triglycerides of Fatty Acid as Drugâ€Encapsulating Agents. Macromolecular Chemistry and Physics, 2015, 216, 427-438.	2.2	3
17	Effect of the Polymer Architecture on the Structural and Biophysical Properties of PEG–PLA Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 10374-10385.	8.0	60
18	Effect of polymer architecture on curcumin encapsulation and release from PEGylated polymer nanoparticles: Toward a drug delivery nano-platform to the CNS. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 409-420.	4.3	38

JEAN-MICHEL RABANEL

#	Article	IF	CITATIONS
19	Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. Journal of Controlled Release, 2014, 185, 71-87.	9.9	247
20	Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): Effect of poly(ethylene glycol) grafting density. International Journal of Pharmaceutics, 2011, 411, 178-187.	5.2	82
21	Effect of aqueous solubility of grafted moiety on the physicochemical properties of poly(d,l-lactide) (PLA) based nanoparticles. International Journal of Pharmaceutics, 2010, 388, 263-273.	5.2	18
22	Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(d,) Tj ETQq0 0 (75, 96-106.) rgBT /Ov 4.3	erlock 10 Tf 5 82
23	Progress technology in microencapsulation methods for cell therapy. Biotechnology Progress, 2009, 25, 946-963.	2.6	118
24	Functionalized nanospheres loaded with anti-angiogenic drugs: Cellular uptake and angiosuppressive efficacy. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 418-427.	4.3	18
25	Effect of mechanical properties of hydrogel nanoparticles on macrophage cell uptake. Soft Matter, 2009, 5, 3984.	2.7	211
26	Selectins Ligand Decorated Drug Carriers for Activated Endothelial Cell Targeting. Bioconjugate Chemistry, 2008, 19, 2030-2039.	3.6	35
27	Direct Measurement of Mechanical and Adhesive Properties of Living Cells Using Surface Forces Apparatus. Australian Journal of Chemistry, 2007, 60, 638.	0.9	3
28	Synthesis and characterization of biodegradable and charged salen-based polymers. Journal of Applied Polymer Science, 2006, 102, 2568-2577.	2.6	0
29	Polysaccharide Hydrogels for the Preparation of Immunoisolated Cell Delivery Systems. ACS Symposium Series, 2006, , 305-339.	0.5	11
30	Synthesis of new versatile functionalized polyesters for biomedical applications. Polymer, 2005, 46, 11263-11272.	3.8	31