Gabriela Alves Macedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/122178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aspergillus sp. lipase: Potential biocatalyst for industrial use. Journal of Molecular Catalysis B: Enzymatic, 2010, 67, 163-171.	1.8	155
2	Seed lipases: sources, applications and properties - a review. Brazilian Journal of Chemical Engineering, 2010, 27, 15-29.	0.7	150
3	Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. Food and Bioproducts Processing, 2017, 101, 1-10.	1.8	117
4	Tannase production by Paecilomyces variotii. Bioresource Technology, 2007, 98, 1832-1837.	4.8	106
5	Enzymes in juice processing: a review. International Journal of Food Science and Technology, 2010, 45, 635-641.	1.3	97
6	Recovery of phenolic compounds from citrus by-products using pressurized liquids — An application to orange peel. Food and Bioproducts Processing, 2018, 112, 9-21.	1.8	97
7	Increasing the antioxidant power of tea extracts by biotransformation of polyphenols. Food Chemistry, 2011, 126, 491-497.	4.2	88
8	Simultaneous extraction of oil and antioxidant compounds from oil palm fruit (Elaeis guineensis) by an aqueous enzymatic process. Bioresource Technology, 2013, 129, 575-581.	4.8	82
9	Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii. Bioresource Technology, 2011, 102, 7343-7348.	4.8	79
10	Enzymatic biotransformation of polyphenolics increases antioxidant activity of red and white grape pomace. Food Research International, 2016, 89, 533-539.	2.9	76
11	Hydrolysis of epigallocatechin gallate using a tannase from Paecilomyces variotii. Food Chemistry, 2008, 108, 228-233.	4.2	66
12	Improving the chemopreventive potential of orange juice by enzymatic biotransformation. Food Research International, 2013, 51, 526-535.	2.9	61
13	Citrus bioactive phenolics: Role in the obesity treatment. LWT - Food Science and Technology, 2014, 59, 1205-1212.	2.5	59
14	Optimising the synthesis of isoamyl butyrate using Rhizopus sp. lipase with a central composite rotatable design. Process Biochemistry, 2004, 39, 687-693.	1.8	56
15	Biotransformation and bioconversion of phenolic compounds obtainment: an overview. Critical Reviews in Biotechnology, 2015, 35, 75-81.	5.1	53
16	Chapter 4 Cutinases:. Advances in Applied Microbiology, 2009, 66, 77-95.	1.3	51
17	Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electronic Journal of Biotechnology, 2007, 10, 0-0.	1.2	51
18	Lipases de látex vegetais: propriedades e aplicações industriais. Quimica Nova, 2006, 29, 93-99.	0.3	50

2

#	Article	IF	CITATIONS
19	Enzyme-assisted biotransformation increases hesperetin content in citrus juice by-products. Food Research International, 2019, 124, 213-221.	2.9	49
20	Optimized synthesis of citronellyl flavour esters using free and immobilized lipase from Rhizopus sp Process Biochemistry, 2005, 40, 3181-3185.	1.8	46
21	Potencial de biocatálise enantiosseletiva de lipases microbianas. Quimica Nova, 2005, 28, 614-621.	0.3	42
22	Integrated microwave- and enzyme-assisted extraction of phenolic compounds from olive pomace. LWT - Food Science and Technology, 2021, 138, 110621.	2.5	40
23	Biotransformation effects on anti lipogenic activity of citrus extracts. Food Chemistry, 2016, 197, 1046-1053.	4.2	39
24	Evaluation of structured lipids with behenic acid in the prevention of obesity. Food Research International, 2017, 95, 52-58.	2.9	38
25	Optimizing the production of cutinase by Fusarium oxysporum using response surface methodology. Enzyme and Microbial Technology, 2007, 41, 613-619.	1.6	37
26	Effects of hydroalcoholic and enzyme-assisted extraction processes on the recovery of catechins and methylxanthines from crude and waste seeds of guarana (Paullinia cupana). Food Chemistry, 2019, 281, 222-230.	4.2	35
27	Health and technological aspects of methylxanthines and polyphenols from guarana: A review. Journal of Functional Foods, 2018, 47, 457-468.	1.6	33
28	Chemopreventive potential of the tannase-mediated biotransformation of green tea. Food Chemistry, 2012, 133, 358-365.	4.2	31
29	Tannase enhances the anti-inflammatory effect of grape pomace in Caco-2 cells treated with IL-1β. Journal of Functional Foods, 2017, 29, 69-76.	1.6	31
30	A Review on Geotrichum Lipases: Production, Purification, Immobilization and Applications. Chemical and Biochemical Engineering Quarterly, 2017, 30, 439-454.	0.5	31
31	Pressurized liquid- and supercritical fluid extraction of crude and waste seeds of guarana (Paullinia) Tj ETQq1 1 Processing, 2019, 117, 194-202.	0.784314 ı 1.8	rgBT /Overloci 31
32	Rich bioactive phenolic extract production by microbial biotransformation of Brazilian Citrus residues. Chemical Engineering Research and Design, 2014, 92, 1802-1810.	2.7	30
33	Simultaneous extraction and biotransformation process to obtain high bioactivity phenolic compounds from brazilian citrus residues. Biotechnology Progress, 2015, 31, 1273-1279.	1.3	30
34	Optimization of enantioselective resolution of racemic ibuprofen by native lipase from Aspergillus niger. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 713-718.	1.4	27
35	Biocatalysis combined with physical technologies for development of a green biodiesel process. Renewable and Sustainable Energy Reviews, 2014, 33, 333-343.	8.2	27
36	Immobilized tannase treatment alters polyphenolic composition in teas and their potential anti-obesity and hypoglycemic activities in vitro. Food and Function, 2016, 7, 3920-3932.	2.1	27

#	Article	IF	CITATIONS
37	A rapid screening method for cutinase producing microorganisms. Brazilian Journal of Microbiology, 2005, 36, 388.	0.8	25
38	Lipase-mediated production of specific lipids with improved biological and physicochemical properties. Process Biochemistry, 2012, 47, 1699-1706.	1.8	25
39	Production and characterization of structured lipids with antiobesity potential and as a source of essential fatty acids. Food Research International, 2017, 99, 713-719.	2.9	25
40	Amazonian Buriti oil: chemical characterization and antioxidant potential. Grasas Y Aceites, 2016, 67, e135.	0.3	25
41	Effect of enzymatic treatment on tannins and phytate in sorghum (<i>Sorghum bicolor</i>) and its nutritional study in rats. International Journal of Food Science and Technology, 2011, 46, 1253-1258.	1.3	24
42	Biotransformed citrus extract as a source of anti-inflammatory polyphenols: Effects in macrophages and adipocytes. Food Research International, 2017, 97, 37-44.	2.9	24
43	Purification and Biochemical Characterization of Tannase from a Newly Isolated Strain of <i>Paecilomyces Variotii</i> . Food Biotechnology, 2007, 21, 207-216.	0.6	23
44	Effect of enzymatic treatment on phytate content and mineral bioacessability in soy drink. Food Research International, 2018, 108, 68-73.	2.9	23
45	A new process for simultaneous production of tannase and phytase by Paecilomyces variotii in solid-state fermentation of orange pomace. Bioprocess and Biosystems Engineering, 2012, 35, 477-482.	1.7	22
46	Comparison of different Brazilian citrus by-products as source of natural antioxidants. Food Science and Biotechnology, 2018, 27, 1301-1309.	1.2	22
47	Combined isoflavones biotransformation increases the bioactive and antioxidant capacity of soymilk. Applied Microbiology and Biotechnology, 2020, 104, 10019-10031.	1.7	21
48	Efficient tannase production using Brazilian citrus residues and potential application for orange juice valorization. Biocatalysis and Agricultural Biotechnology, 2015, 4, 91-97.	1.5	20
49	A new biotechnological process to enhance the soymilk bioactivity. Food Science and Biotechnology, 2016, 25, 763-770.	1.2	20
50	Effects of different solid state fermentation substrate on biochemical properties of cutinase from Fusarium sp Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 181-186.	1.8	19
51	Biotransformed grape pomace as a potential source of anti-inflammatory polyphenolics: Effects in Caco-2Âcells. Food Bioscience, 2020, 35, 100607.	2.0	19
52	Influence of emulsion droplet size on antimicrobial activity of interesterified Amazonian oils. LWT - Food Science and Technology, 2015, 60, 207-212.	2.5	18
53	Peanut skin polyphenols inhibit toxicity induced by advanced glycation end-products in RAW264.7 macrophages. Food and Chemical Toxicology, 2020, 145, 111619.	1.8	18
54	Kinetic Properties and Enantioselectivity of The Lipases Produced by FourAspergillusSpecies. Food Biotechnology, 2005, 19, 183-192.	0.6	17

#	Article	IF	CITATIONS
55	Cutinase production by Fusarium oxysporum in liquid medium using central composite design. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 59-67.	1.4	17
56	Improvement of Phytase Activity by a New Saccharomyces cerevisiae Strain Using Statistical Optimization. Enzyme Research, 2011, 2011, 1-6.	1.8	17
57	Application of lipases to regiospecific interesterification of exotic oils from an Amazonian area. Journal of Biotechnology, 2016, 218, 13-20.	1.9	17
58	Impact of microbiota on the use and effects of isoflavones in the relief of climacteric symptoms in menopausal women – A review. Journal of Functional Foods, 2018, 41, 100-111.	1.6	17
59	Production of Cutinase by Fusarium oxysporum on Brazilian Agricultural By-products and its Enantioselective Properties. Food and Bioprocess Technology, 2012, 5, 138-146.	2.6	16
60	Lipase catalyzed interesterification of Amazonian patauÃ; oil and palm stearin for preparation of specific-structured oils. Journal of Food Science and Technology, 2015, 52, 8268-8275.	1.4	16
61	Anti-glycation effect and the α-amylase, lipase, and α-glycosidase inhibition properties of a polyphenolic fraction derived from citrus wastes. Preparative Biochemistry and Biotechnology, 2020, 50, 794-802.	1.0	16
62	Enzyme-assisted extraction of flavanones from citrus pomace: Obtention of natural compounds with anti-virulence and anti-adhesive effect against Salmonella enterica subsp. enterica serovar Typhimurium. Food Control, 2021, 120, 107525.	2.8	16
63	Production of Lipase from Candida rugosa Using Cheese Whey through Experimental Design and Surface Response Methodology. Food and Bioprocess Technology, 2011, 4, 1473-1481.	2.6	15
64	Biochemical characterization of highly organic solvent-tolerant cutinase from Fusarium oxysporum. Biocatalysis and Agricultural Biotechnology, 2013, 2, 372-376.	1.5	15
65	Challenges on the processing of plant-based neuronutraceuticals and functional foods with emerging technologies: Extraction, encapsulation and therapeutic applications. Trends in Food Science and Technology, 2019, 91, 518-529.	7.8	15
66	Immobilization ofPaecilomyces variotiitannase and properties of the immobilized enzyme. Journal of Microencapsulation, 2011, 28, 211-219.	1.2	14
67	Synthesis and characterization of structured lipid rich in behenic acid by enzymatic interesterification. Food and Bioproducts Processing, 2020, 122, 303-310.	1.8	14
68	Use of agroâ€industrial residues as potent antioxidant, antiglycation agents, and αâ€amylase and pancreatic lipase inhibitory activity. Journal of Food Processing and Preservation, 2020, 44, e14397.	0.9	14
69	Improving the chemical properties of Buriti oil (Mauritia flexuosa L.) by enzymatic interesterification. Grasas Y Aceites, 2018, 69, 282.	0.3	14
70	Fermentation and enzyme treatments for sorghum. Brazilian Journal of Microbiology, 2012, 43, 89-97.	0.8	13
71	The postprandial inflammatory response is attenuated by a dietary structured lipid containing behenic acid. Journal of Functional Foods, 2019, 58, 350-354.	1.6	12
72	Enzymatic synthesis of short chain citronellyl esters by a new lipase from Rhizopus sp. Electronic Journal of Biotechnology, 2003, 6, .	1.2	12

#	Article	IF	CITATIONS
73	Seleção de fungos produtores de tanase em resÃduos vegetais ricos em taninos. Ciencia E Agrotecnologia, 2005, 29, 833-838.	1.5	11
74	Biosynthesis of oleyl oleate wax ester by non-commercial lipase. Food Science and Biotechnology, 2011, 20, 1203-1209.	1.2	11
75	Lipases microbianas na produção de ésteres formadores de aroma. Food Science and Technology, 1997, 17, 115-119.	0.8	10
76	Evaluation of partial purification and immobilization of lipase from Geotrichum candidum. Biocatalysis and Agricultural Biotechnology, 2015, 4, 321-326.	1.5	10
77	Flavanones biotransformation of citrus by-products improves antioxidant and ACE inhibitory activities in vitro. Food Bioscience, 2020, 38, 100787.	2.0	10
78	STRUCTURED LIPID CONTAINING BEHENIC ACID VERSUS ORLISTAT FOR WEIGHT LOSS: AN EXPERIMENTAL STUDY IN MICE. PharmaNutrition, 2020, 14, 100213.	0.8	10
79	Improvement of lipase production from Geotrichum sp. in shaken flasks. Chemical Industry and Chemical Engineering Quarterly, 2012, 18, 459-464.	0.4	9
80	Enhanced estrogenic effects of biotransformed soy extracts. Journal of Functional Foods, 2018, 48, 117-124.	1.6	9
81	Exploring in vitro effects of biotransformed isoflavones extracts: Antioxidant, antiinflammatory, and antilipogenic. Journal of Food Biochemistry, 2019, 43, e12850.	1.2	9
82	Design of new lipids from bovine milk fat for baby nutrition. Critical Reviews in Food Science and Nutrition, 2022, 62, 145-159.	5.4	8
83	Effect of enzymatic treatment of citrus by-products on bacterial growth, adhesion and cytokine production by Caco-2 cells. Food and Function, 2020, 11, 8996-9009.	2.1	7
84	Biotransformation processes in soymilk isoflavones to enhance antiâ€inflammatory potential in intestinal cellular model. Journal of Food Biochemistry, 2020, 44, e13149.	1.2	7
85	Effects of enzyme-assisted extraction on the profile and bioaccessibility of isoflavones from soybean flour. Food Research International, 2021, 147, 110474.	2.9	7
86	Bioconversion of Isoflavones into Bioactive Equol: State of the Art. Recent Patents on Food, Nutrition & Agriculture, 2016, 8, 91-98.	0.5	7
87	Influence of Nitrogen and Carbon Sources on Riboflavin Production by Wild Strain of Candida sp Food and Bioprocess Technology, 2012, 5, 466-473.	2.6	6
88	A new approach for flavor and aroma encapsulation. , 2016, , 623-661.		6
89	Medium composition influence on Biotin and Riboflavin production by newly isolated Candida sp. Brazilian Journal of Microbiology, 2011, 42, 1093-1100.	0.8	5
90	Fungi from Brazilian Savannah and Atlantic rainforest show high antibacterial and antifungal activity. Biocatalysis and Agricultural Biotechnology, 2017, 10, 1-8.	1.5	5

#	Article	IF	CITATIONS
91	Influence of rye flour enzymatic biotransformation on the antioxidant capacity and transepithelial transport of phenolic acids. Food and Function, 2018, 9, 1889-1898.	2.1	5
92	Conditions of enzyme-assisted extraction to increase the recovery of flavanone aglycones from pectin waste. Journal of Food Science and Technology, 2020, 58, 4303-4312.	1.4	5
93	Evaluation of cytotoxicity of nanolipid carriers with structured Buriti oil in the Caco-2 and HepG2 cell lines. Bioprocess and Biosystems Engineering, 2020, 43, 1105-1118.	1.7	5
94	Dispersionâ€assisted extraction of guarana processing wastes on the obtaining of polyphenols and alkaloids. Journal of Food Process Engineering, 2020, 43, e13381.	1.5	5
95	Biotransformed Antioxidant isoflavone extracts present high-capacity to attenuate the in vitro formation of advanced glycation end products. Food Biotechnology, 2021, 35, 50-66.	0.6	5
96	Biochemical characterization of esterase from soybean (Glycine max L.). Food Science and Biotechnology, 2011, 20, 1195-1201.	1.2	4
97	Antioxidant Potential and Modulatory Effects of Amazonian Restructured Lipids in Liver Cells. Food Technology and Biotechnology, 2017, 55, 553-561.	0.9	4
98	The Importance of Microbial and Enzymatic Bioconversions of Isoflavones in Bioactive Compounds. , 2017, , 55-93.		4
99	Aglycone-rich extracts from citrus by-products induced endothelium-independent relaxation in isolated arteries. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101481.	1.5	4
100	Fermentation and enzyme treatments for sorghum. Brazilian Journal of Microbiology, 2012, 43, 89-97.	0.8	4
101	Production of cutinase by Fusarium oxysporum in solid-state fermentation using agro-industrial residues. Journal of Biotechnology, 2007, 131, S212.	1.9	3
102	Evaluation of Nanostructured Lipid Carriers Produced with Interesterified Buriti Oil. Food Technology and Biotechnology, 2020, 58, 284-294.	0.9	3
103	Improving nutrient availability of defatted rice bran using different phytase sources applied to grass carp (Ctenopharyngodon idella) diet. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20190201.	0.3	3
104	Kinetics of Denaturation and Effects of Surfactants and Polyethylene Glycol on Soybean Esterase (<i>Glycine max</i> L) Stability. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 37-44.	0.8	2
105	Microbial Production of Added-Value Ingredients: State of the Art. , 2017, , 1-32.		2
106	Current trends on the valorization of waste fractions for the recovery of alkaloids and polyphenols: case study of guarana. , 2021, , 157-171.		2
107	Crystallization isotherms of enzymatically interesterified oils from Amazon, using free and immobilized enzymes. New Biotechnology, 2012, 29, S94-S95.	2.4	1
108	Biochemical Characterization of Purified Esterase from Soybean (<i>Glycine max</i>) Seed. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 37-45.	0.8	1

#	Article	IF	CITATIONS
109	In vitro effects of peanut skin polyphenolic extract on oxidative stress, adipogenesis, and lipid accumulation. Journal of Food Processing and Preservation, 2021, 45, e15815.	0.9	1
110	Cutinases fúngicas: propriedades e aplicações industriais. Quimica Nova, 2008, 31, 2118-2123.	0.3	1
111	Comparing chemical and enzymatic synthesis of rich behenic lipids products: technological and nutritional potential. Food Science and Technology, 0, , .	0.8	1
112	Sequencial selection for thermostable phytase from newly yeasts. Journal of Biotechnology, 2007, 131, S212.	1.9	0
113	Inoculum padronization for the production of cutinase by Fusarium oxysporum. Brazilian Journal of Microbiology, 2008, 39, 74-77.	0.8	Ο
114	Biotransformation of lactones by Fusarium oxysporum using different hydrolyzed oils. New Biotechnology, 2012, 29, S83.	2.4	0
115	Integrating Biological Processing and Emerging Technologies for Polyphenol Extraction: A Review of Latest Developments. , 2021, , 183-190.		Ο
116	Phytochemicals as Potential Inhibitors of Advanced Glycation End Products: Health Aspects and Patent Survey. Recent Patents on Food, Nutrition & Agriculture, 2022, 13, 3-16.	0.5	0
117	Tannaseâ€treated grape pomace attenuates ILâ€1βâ€induced inflammation in Cacoâ€2 cells. FASEB Journal, 2010 30, .	⁵ 0.2	Ο
118	Partial purification and biochemical characterization of an alkaline esterase from Sorghum bicolor. Acta Scientiarum - Biological Sciences, 0, 42, e52115.	0.3	0
119	Production and characterization of nanoemulsion with low-calorie structured lipids and its potential to modulate biomarkers associated with obesity and comorbidities. Food Research International, 2021, 150, 110782.	2.9	0