
Argyris Papantonis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1221382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional organization of RNA polymerase II in nuclear subcompartments. Current Opinion in Cell Biology, 2022, 74, 88-96.	2.6	20
2	Escape from senescence: revisiting cancer therapeutic strategies. Molecular and Cellular Oncology, 2022, 9, 2030158.	0.3	6
3	CRISPR-Cas9-mediated induction of large chromosomal inversions in human bronchial epithelial cells. STAR Protocols, 2022, 3, 101257.	0.5	4
4	Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes. IScience, 2022, 25, 104577.	1.9	12
5	Isolation methodology is essential to the evaluation of the extracellular vesicle component of the senescenceâ€associated secretory phenotype. Journal of Extracellular Vesicles, 2021, 10, e12041.	5.5	11
6	DNA methylation changes during long-term in vitro cell culture are caused by epigenetic drift. Communications Biology, 2021, 4, 598.	2.0	27
7	Overarching control of autophagy and DNA damage response by CHD6 revealed by modeling a rare human pathology. Nature Communications, 2021, 12, 3014.	5.8	16
8	HMGB1 coordinates SASPâ€related chromatin folding and RNA homeostasis on the path to senescence. Molecular Systems Biology, 2021, 17, e9760.	3.2	31
9	HMGs as rheostats of chromosomal structure and cell proliferation. Trends in Genetics, 2021, 37, 986-994.	2.9	5
10	RNA polymerase II transcription compartments: from multivalent chromatin binding to liquid droplet formation?. Nature Reviews Molecular Cell Biology, 2021, 22, 645-646.	16.1	15
11	Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28, 1740-1757.e8.	5.2	77
12	Cilium induction triggers differentiation of glioma stem cells. Cell Reports, 2021, 36, 109656.	2.9	24
13	RNA polymerase II is required for spatial chromatin reorganization following exit from mitosis. Science Advances, 2021, 7, eabg8205.	4.7	70
14	Monitoring the Levels of Cellular NF-κB Activation States. Cancers, 2021, 13, 5351.	1.7	15
15	Cohesin puts a break on distal homology hunt. Nature Cell Biology, 2021, 23, 1112-1114.	4.6	0
16	TNF-α-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer. Nature Cancer, 2021, 2, 1185-1203.	5.7	46
17	A recurrent chromosomal inversion suffices for driving escape from oncogene-induced senescence via subTAD reorganization. Molecular Cell, 2021, 81, 4907-4923.e8.	4.5	28
18	iHi-C 2.0: A simple approach for mapping native spatial chromatin organisation from low cell numbers. Methods, 2020, 170, 33-37	1.9	6

ARGYRIS PAPANTONIS

#	Article	IF	CITATIONS
19	Genome folding and refolding in differentiation and cellular senescence. Current Opinion in Cell Biology, 2020, 67, 56-63.	2.6	3
20	Spatial genome architecture and the emergence of malignancy. Human Molecular Genetics, 2020, 29, R197-R204.	1.4	6
21	Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control. Genome Research, 2020, 30, 515-527.	2.4	54
22	Distinct ILâ€1αâ€responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner. EMBO Journal, 2020, 39, e101533.	3.5	25
23	<i>GemC1</i> is a critical switch for neural stem cell generation in the postnatal brain. Clia, 2019, 67, 2360-2373.	2.5	23
24	Technologies to study spatial genome organization: beyond 3C. Briefings in Functional Genomics, 2019, 18, 395-401.	1.3	4
25	Modes of phase separation affecting chromatin regulation. Open Biology, 2019, 9, 190167.	1.5	30
26	Organizing Principles for the Spatial Folding of Chromosomes. , 2019, , 107-130.		0
27	Spatial Chromosome Folding and Active Transcription Drive DNA Fragility and Formation of Oncogenic MLL Translocations. Molecular Cell, 2019, 75, 267-283.e12.	4.5	104
28	GemC1 governs multiciliogenesis through direct interaction and transcriptional regulation of p73. Journal of Cell Science, 2019, 132, .	1.2	27
29	Loss of genomic integrity induced by lysosphingolipid imbalance drives ageing in the heart. EMBO Reports, 2019, 20, .	2.0	26
30	yylncT Defines a Class of Divergently Transcribed IncRNAs and Safeguards the T-mediated Mesodermal Commitment of Human PSCs. Cell Stem Cell, 2019, 24, 318-327.e8.	5.2	44
31	Transcription Factories as Spatial and Functional Organization Nodes. , 2018, , 283-296.		1
32	Detecting Circular RNAs by RNA Fluorescence In Situ Hybridization. Methods in Molecular Biology, 2018, 1724, 69-75.	0.4	43
33	Shaping epigenetic memory via genomic bookmarking. Nucleic Acids Research, 2018, 46, 83-93.	6.5	73
34	HMGB2 Loss upon Senescence Entry Disrupts Genomic Organization and Induces CTCF Clustering across Cell Types. Molecular Cell, 2018, 70, 730-744.e6.	4.5	164
35	Forces driving the threeâ€dimensional folding of eukaryotic genomes. Molecular Systems Biology, 2018, 14, e8214.	3.2	75
36	Senescenceâ€associated <scp>DNA</scp> methylation is stochastically acquired in subpopulations of mesenchymal stem cells. Aging Cell, 2017, 16, 183-191.	3.0	70

ARGYRIS PAPANTONIS

#	Article	IF	CITATIONS
37	Cutting a Long Intron Short: Recursive Splicing and Its Implications. Frontiers in Physiology, 2016, 7, 598.	1.3	26
38	Exploiting native forces to capture chromosome conformation in mammalian cell nuclei. Molecular Systems Biology, 2016, 12, 891.	3.2	52
39	GARLIC: a bioinformatic toolkit for aetiologically connecting diseases and cell type-specific regulatory maps. Human Molecular Genetics, 2016, 26, ddw423.	1.4	1
40	Binding of nuclear factor κB to noncanonical consensus sites reveals its multimodal role during the early inflammatory response. Genome Research, 2016, 26, 1478-1489.	2.4	43
41	Isolation of the protein and RNA content of active sites of transcription from mammalian cells. Nature Protocols, 2016, 11, 553-565.	5.5	20
42	Contribution of 3D Chromatin Architecture to the Maintenance of Pluripotency. Current Stem Cell Reports, 2015, 1, 170-175.	0.7	2
43	Splicing of many human genes involves sites embedded within introns. Nucleic Acids Research, 2015, 43, 4721-4732.	6.5	31
44	Dissecting the nascent human transcriptome by analysing the RNA content of transcription factories. Nucleic Acids Research, 2015, 43, e95-e95.	6.5	28
45	Exon Skipping Is Correlated with Exon Circularization. Journal of Molecular Biology, 2015, 427, 2414-2417.	2.0	308
46	Chorion Genes: A Landscape of Their Evolution, Structure, and Regulation. Annual Review of Entomology, 2015, 60, 177-194.	5.7	40
47	TNFα signalling primes chromatin for NF-κB binding and induces rapid and widespread nucleosome repositioning. Genome Biology, 2014, 15, 536.	3.8	45
48	Transcription as a force partitioning the eukaryotic genome. Biological Chemistry, 2014, 395, 1301-1305.	1.2	10
49	The 4-D landscape of the inflammatory response. Epigenetics and Chromatin, 2013, 6, .	1.8	0
50	Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3605-11.	3.3	219
51	Transcription Factories: Genome Organization and Gene Regulation. Chemical Reviews, 2013, 113, 8683-8705.	23.0	218
52	Promoter type influences transcriptional topography by targeting genes to distinct nucleoplasmic sites. Journal of Cell Science, 2013, 126, 2052-9.	1.2	12
53	Space exploration by the promoter of a long human gene during one transcription cycle. Nucleic Acids Research, 2013, 41, 2216-2227.	6.5	26
54	TNFα signals through specialized factories where responsive coding and miRNA genes are transcribed. EMBO Journal, 2012, 31, 4404-4414.	3.5	122

ARGYRIS PAPANTONIS

#	Article	IF	CITATIONS
55	Enhancers and silencers: an integrated and simple model for their function. Epigenetics and Chromatin, 2012, 5, 1.	1.8	119
56	Dynamic Reconfiguration of Long Human Genes during One Transcription Cycle. Molecular and Cellular Biology, 2012, 32, 2738-2747.	1.1	37
57	The proteomes of transcription factories containing RNA polymerases I, II or III. Nature Methods, 2011, 8, 963-968.	9.0	74
58	Fixing the model for transcription. Transcription, 2011, 2, 41-44.	1.7	37
59	Genome architecture and the role of transcription. Current Opinion in Cell Biology, 2010, 22, 271-276.	2.6	46
60	Modeling bidirectional transcription using silkmoth chorion gene promoters. Organogenesis, 2010, 6, 54-58.	0.4	6
61	Active RNA Polymerases: Mobile or Immobile Molecular Machines?. PLoS Biology, 2010, 8, e1000419.	2.6	84
62	A wave of nascent transcription on activated human genes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18357-18361.	3.3	145
63	A modified chromatin-immunoprecipitation protocol for silkmoth ovarian follicular cells reveals C/EBP and GATA binding modes on an early chorion gene promoter. Molecular Biology Reports, 2009, 36, 733-736.	1.0	9
64	CHD1 Assumes a Central Role during Follicle Development. Journal of Molecular Biology, 2008, 383, 957-969.	2.0	6
65	Chorion gene activation and repression is dependent on BmC/EBP expression and binding to cognate cis-elements. Biochemical and Biophysical Research Communications, 2008, 369, 905-909.	1.0	12
66	Architectural factor HMGA induces promoter bending and recruits C/EBP and GATA during silkmoth chorion gene regulation. Biochemical Journal, 2008, 416, 85-97.	1.7	12
67	DNA Methylation Changes Upon Senescence are Strand-Specific and Reflect Chromatin Conformation. SSRN Electronic Journal, 0, , .	0.4	2