Argyris Papantonis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1221382/publications.pdf

Version: 2024-02-01

201575 197736 3,011 67 27 49 citations g-index h-index papers 77 77 77 4047 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exon Skipping Is Correlated with Exon Circularization. Journal of Molecular Biology, 2015, 427, 2414-2417.	2.0	308
2	Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3605-11.	3.3	219
3	Transcription Factories: Genome Organization and Gene Regulation. Chemical Reviews, 2013, 113, 8683-8705.	23.0	218
4	HMGB2 Loss upon Senescence Entry Disrupts Genomic Organization and Induces CTCF Clustering across Cell Types. Molecular Cell, 2018, 70, 730-744.e6.	4.5	164
5	A wave of nascent transcription on activated human genes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18357-18361.	3.3	145
6	TNFÎ \pm signals through specialized factories where responsive coding and miRNA genes are transcribed. EMBO Journal, 2012, 31, 4404-4414.	3.5	122
7	Enhancers and silencers: an integrated and simple model for their function. Epigenetics and Chromatin, 2012, 5, 1.	1.8	119
8	Spatial Chromosome Folding and Active Transcription Drive DNA Fragility and Formation of Oncogenic MLL Translocations. Molecular Cell, 2019, 75, 267-283.e12.	4.5	104
9	Active RNA Polymerases: Mobile or Immobile Molecular Machines?. PLoS Biology, 2010, 8, e1000419.	2.6	84
10	Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28, 1740-1757.e8.	5.2	77
11	Forces driving the threeâ€dimensional folding of eukaryotic genomes. Molecular Systems Biology, 2018, 14, e8214.	3.2	75
12	The proteomes of transcription factories containing RNA polymerases I, II or III. Nature Methods, 2011, 8, 963-968.	9.0	74
13	Shaping epigenetic memory via genomic bookmarking. Nucleic Acids Research, 2018, 46, 83-93.	6.5	73
14	Senescenceâ€associated <scp>DNA</scp> methylation is stochastically acquired in subpopulations of mesenchymal stem cells. Aging Cell, 2017, 16, 183-191.	3.0	70
15	RNA polymerase II is required for spatial chromatin reorganization following exit from mitosis. Science Advances, 2021, 7, eabg8205.	4.7	70
16	Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control. Genome Research, 2020, 30, 515-527.	2.4	54
17	Exploiting native forces to capture chromosome conformation in mammalian cell nuclei. Molecular Systems Biology, 2016, 12, 891.	3.2	52
18	Genome architecture and the role of transcription. Current Opinion in Cell Biology, 2010, 22, 271-276.	2.6	46

#	Article	IF	Citations
19	TNF- \hat{l} ±-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer. Nature Cancer, 2021, 2, 1185-1203.	5.7	46
20	TNFα signalling primes chromatin for NF-κB binding and induces rapid and widespread nucleosome repositioning. Genome Biology, 2014, 15, 536.	3.8	45
21	yylncT Defines a Class of Divergently Transcribed IncRNAs and Safeguards the T-mediated Mesodermal Commitment of Human PSCs. Cell Stem Cell, 2019, 24, 318-327.e8.	5.2	44
22	Binding of nuclear factor \hat{l}^{B} to noncanonical consensus sites reveals its multimodal role during the early inflammatory response. Genome Research, 2016, 26, 1478-1489.	2.4	43
23	Detecting Circular RNAs by RNA Fluorescence In Situ Hybridization. Methods in Molecular Biology, 2018, 1724, 69-75.	0.4	43
24	Chorion Genes: A Landscape of Their Evolution, Structure, and Regulation. Annual Review of Entomology, 2015, 60, 177-194.	5.7	40
25	Fixing the model for transcription. Transcription, 2011, 2, 41-44.	1.7	37
26	Dynamic Reconfiguration of Long Human Genes during One Transcription Cycle. Molecular and Cellular Biology, 2012, 32, 2738-2747.	1,1	37
27	Splicing of many human genes involves sites embedded within introns. Nucleic Acids Research, 2015, 43, 4721-4732.	6.5	31
28	HMGB1 coordinates SASPâ€related chromatin folding and RNA homeostasis on the path to senescence. Molecular Systems Biology, 2021, 17, e9760.	3.2	31
29	Modes of phase separation affecting chromatin regulation. Open Biology, 2019, 9, 190167.	1.5	30
30	Dissecting the nascent human transcriptome by analysing the RNA content of transcription factories. Nucleic Acids Research, 2015, 43, e95-e95.	6.5	28
31	A recurrent chromosomal inversion suffices for driving escape from oncogene-induced senescence via subTAD reorganization. Molecular Cell, 2021, 81, 4907-4923.e8.	4.5	28
32	GemC1 governs multiciliogenesis through direct interaction and transcriptional regulation of p73. Journal of Cell Science, 2019, 132, .	1.2	27
33	DNA methylation changes during long-term in vitro cell culture are caused by epigenetic drift. Communications Biology, 2021, 4, 598.	2.0	27
34	Space exploration by the promoter of a long human gene during one transcription cycle. Nucleic Acids Research, 2013, 41, 2216-2227.	6.5	26
35	Cutting a Long Intron Short: Recursive Splicing and Its Implications. Frontiers in Physiology, 2016, 7, 598.	1.3	26
36	Loss of genomic integrity induced by lysosphingolipid imbalance drives ageing in the heart. EMBO Reports, 2019, 20, .	2.0	26

#	Article	IF	CITATIONS
37	Distinct ILâ€1αâ€responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner. EMBO Journal, 2020, 39, e101533.	3 . 5	25
38	Cilium induction triggers differentiation of glioma stem cells. Cell Reports, 2021, 36, 109656.	2.9	24
39	<i>GemC1</i> is a critical switch for neural stem cell generation in the postnatal brain. Glia, 2019, 67, 2360-2373.	2.5	23
40	Isolation of the protein and RNA content of active sites of transcription from mammalian cells. Nature Protocols, 2016, 11, 553-565.	5 . 5	20
41	Functional organization of RNA polymerase II in nuclear subcompartments. Current Opinion in Cell Biology, 2022, 74, 88-96.	2.6	20
42	Overarching control of autophagy and DNA damage response by CHD6 revealed by modeling a rare human pathology. Nature Communications, 2021, 12, 3014.	5.8	16
43	RNA polymerase II transcription compartments: from multivalent chromatin binding to liquid droplet formation?. Nature Reviews Molecular Cell Biology, 2021, 22, 645-646.	16.1	15
44	Monitoring the Levels of Cellular NF-κB Activation States. Cancers, 2021, 13, 5351.	1.7	15
45	Chorion gene activation and repression is dependent on BmC/EBP expression and binding to cognate cis-elements. Biochemical and Biophysical Research Communications, 2008, 369, 905-909.	1.0	12
46	Architectural factor HMGA induces promoter bending and recruits C/EBP and GATA during silkmoth chorion gene regulation. Biochemical Journal, 2008, 416, 85-97.	1.7	12
47	Promoter type influences transcriptional topography by targeting genes to distinct nucleoplasmic sites. Journal of Cell Science, 2013, 126, 2052-9.	1.2	12
48	Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes. IScience, 2022, 25, 104577.	1.9	12
49	Isolation methodology is essential to the evaluation of the extracellular vesicle component of the senescenceâ€associated secretory phenotype. Journal of Extracellular Vesicles, 2021, 10, e12041.	5.5	11
50	Transcription as a force partitioning the eukaryotic genome. Biological Chemistry, 2014, 395, 1301-1305.	1.2	10
51	A modified chromatin-immunoprecipitation protocol for silkmoth ovarian follicular cells reveals C/EBP and GATA binding modes on an early chorion gene promoter. Molecular Biology Reports, 2009, 36, 733-736.	1.0	9
52	CHD1 Assumes a Central Role during Follicle Development. Journal of Molecular Biology, 2008, 383, 957-969.	2.0	6
53	Modeling bidirectional transcription using silkmoth chorion gene promoters. Organogenesis, 2010, 6, 54-58.	0.4	6
54	iHi-C 2.0: A simple approach for mapping native spatial chromatin organisation from low cell numbers. Methods, 2020, 170, 33-37.	1.9	6

#	Article	IF	CITATIONS
55	Spatial genome architecture and the emergence of malignancy. Human Molecular Genetics, 2020, 29, R197-R204.	1.4	6
56	Escape from senescence: revisiting cancer therapeutic strategies. Molecular and Cellular Oncology, 2022, 9, 2030158.	0.3	6
57	HMGs as rheostats of chromosomal structure and cell proliferation. Trends in Genetics, 2021, 37, 986-994.	2.9	5
58	Technologies to study spatial genome organization: beyond 3C. Briefings in Functional Genomics, 2019, 18, 395-401.	1.3	4
59	CRISPR-Cas9-mediated induction of large chromosomal inversions in human bronchial epithelial cells. STAR Protocols, 2022, 3, 101257.	0.5	4
60	Genome folding and refolding in differentiation and cellular senescence. Current Opinion in Cell Biology, 2020, 67, 56-63.	2.6	3
61	Contribution of 3D Chromatin Architecture to the Maintenance of Pluripotency. Current Stem Cell Reports, 2015, 1, 170-175.	0.7	2
62	DNA Methylation Changes Upon Senescence are Strand-Specific and Reflect Chromatin Conformation. SSRN Electronic Journal, 0, , .	0.4	2
63	GARLIC: a bioinformatic toolkit for aetiologically connecting diseases and cell type-specific regulatory maps. Human Molecular Genetics, 2016, 26, ddw423.	1.4	1
64	Transcription Factories as Spatial and Functional Organization Nodes., 2018,, 283-296.		1
65	The 4-D landscape of the inflammatory response. Epigenetics and Chromatin, 2013, 6, .	1.8	0
66	Organizing Principles for the Spatial Folding of Chromosomes. , 2019, , 107-130.		0
67	Cohesin puts a break on distal homology hunt. Nature Cell Biology, 2021, 23, 1112-1114.	4.6	O