List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Change and the Ecology of Cities. Science, 2008, 319, 756-760.	6.0	4,931
2	Future global urban water scarcity and potential solutions. Nature Communications, 2021, 12, 4667.	5.8	463
3	Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landscape Ecology, 2016, 31, 219-227.	1.9	336
4	How much of the world's land has been urbanized, really? A hierarchical framework for avoiding confusion. Landscape Ecology, 2014, 29, 763-771.	1.9	288
5	Defining and measuring urban sustainability: a review of indicators. Landscape Ecology, 2015, 30, 1175-1193.	1.9	226
6	Key concepts and research topics in landscape ecology revisited: 30Âyears after the Allerton Park workshop. Landscape Ecology, 2013, 28, 1-11.	1.9	218
7	Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nature Communications, 2019, 10, 5558.	5.8	198
8	ROS accumulation and antiviral defence control by microRNA528 in rice. Nature Plants, 2017, 3, 16203.	4.7	189
9	Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. ELife, 2015, 4, .	2.8	185
10	Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice. Molecular Plant, 2016, 9, 1302-1314.	3.9	181
11	Viral Infection Induces Expression of Novel Phased MicroRNAs from Conserved Cellular MicroRNA Precursors. PLoS Pathogens, 2011, 7, e1002176.	2.1	167
12	Historical landscape dynamics of Inner Mongolia: patterns, drivers, and impacts. Landscape Ecology, 2015, 30, 1579-1598.	1.9	165
13	Quantifying the speed, growth modes, and landscape pattern changes of urbanization: a hierarchical patch dynamics approach. Landscape Ecology, 2013, 28, 1875-1888.	1.9	153
14	Biogenesis, Function, and Applications of Virus-Derived Small RNAs in Plants. Frontiers in Microbiology, 2015, 6, 1237.	1.5	130
15	Spatiotemporal pattern of urbanization in Shanghai, China between 1989 and 2005. Landscape Ecology, 2013, 28, 1545-1565.	1.9	113
16	Spatial pattern of urban functions in the Beijing metropolitan region. Habitat International, 2010, 34, 249-255.	2.3	111
17	Landscape sustainability science (II): core questions and key approaches. Landscape Ecology, 2021, 36, 2453-2485.	1.9	110
18	Rice Dwarf Virus P2 Protein Hijacks Auxin Signaling by Directly Targeting the Rice OsIAA10 Protein, Enhancing Viral Infection and Disease Development. PLoS Pathogens, 2016, 12, e1005847.	2.1	108

#	Article	IF	CITATIONS
19	p2 of <i>Rice stripe virus</i> (RSV) interacts with OsSGS3 and is a silencing suppressor. Molecular Plant Pathology, 2011, 12, 808-814.	2.0	104
20	Osaâ€miR164a targets <i>Os<scp>NAC</scp>60</i> and negatively regulates rice immunity against the blast fungus <i>Magnaporthe oryzae</i> . Plant Journal, 2018, 95, 584-597.	2.8	103
21	Constructed wetlands as biofuel productionÂsystems. Nature Climate Change, 2012, 2, 190-194.	8.1	90
22	Amur tigers and leopards returning to China: direct evidence and a landscape conservation plan. Landscape Ecology, 2016, 31, 491-503.	1.9	85
23	Transcriptional Regulation of miR528 by OsSPL9 Orchestrates Antiviral Response in Rice. Molecular Plant, 2019, 12, 1114-1122.	3.9	73
24	How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship?. Landscape Ecology, 2018, 33, 341-352.	1.9	72
25	The impairment of environmental sustainability due to rapid urbanization in the dryland region of northern China. Landscape and Urban Planning, 2019, 187, 165-180.	3.4	66
26	Building green infrastructure to enhance urban resilience to climate change and pandemics. Landscape Ecology, 2021, 36, 665-673.	1.9	66
27	Simulating spatiotemporal dynamics of urbanization with multi-agent systems—A case study of the Phoenix metropolitan region, USA. Ecological Modelling, 2011, 222, 1129-1138.	1.2	64
28	Regulation of Rice Tillering by RNA-Directed DNA Methylation at Miniature Inverted-Repeat Transposable Elements. Molecular Plant, 2020, 13, 851-863.	3.9	63
29	A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection. ELife, 2017, 6, .	2.8	61
30	Characterizing spatiotemporal patterns of air pollution in China: A multiscale landscape approach. Ecological Indicators, 2017, 76, 344-356.	2.6	59
31	What drives urban growth in China? A multi-scale comparative analysis. Applied Geography, 2018, 98, 43-51.	1.7	57
32	Determinants of plant species richness and patterns of nestedness in fragmented landscapes: evidence from land-bridge islands. Landscape Ecology, 2011, 26, 1405-1417.	1.9	55
33	Rice stripe tenuivirus p2 may recruit or manipulate nucleolar functions through an interaction with fibrillarin to promote virus systemic movement. Molecular Plant Pathology, 2015, 16, 921-930.	2.0	51
34	Impacts of urbanization on summer climate in China: An assessment with coupled landâ€atmospheric modeling. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,505.	1.2	50
35	Improving the writing of research papers: IMRAD and beyond. Landscape Ecology, 2011, 26, 1345-1349.	1.9	49
36	Rice stripe virus NS3 protein regulates primary miRNA processing through association with the miRNA biogenesis factor OsDRB1 and facilitates virus infection in rice. PLoS Pathogens, 2017, 13, e1006662.	2.1	46

#	Article	IF	CITATIONS
37	China's dairy crisis: impacts, causes and policy implications for a sustainable dairy industry. International Journal of Sustainable Development and World Ecology, 2011, 18, 434-441.	3.2	45
38	Weak sustainability is not sustainable: Socioeconomic and environmental assessment of Inner Mongolia for the past three decades. Resources, Conservation and Recycling, 2019, 141, 243-252.	5.3	44
39	Roles of science in institutional changes: The case of desertification control in China. Environmental Science and Policy, 2013, 27, 32-54.	2.4	41
40	Towards a better understanding of landscape patterns and ecosystem processes of the Mongolian Plateau. Landscape Ecology, 2015, 30, 1573-1578.	1.9	39
41	Equids engineer desert water availability. Science, 2021, 372, 491-495.	6.0	38
42	Comparing urbanization patterns in Guangzhou of China and Phoenix of the USA: The influences of roads and rivers. Ecological Indicators, 2015, 52, 23-30.	2.6	36
43	Spatial heterogeneity of urban soils: the case of the Beijing metropolitan region, China. Ecological Processes, 2014, 3, .	1.6	35
44	Ecologically asynchronous agricultural practice erodes sustainability of the Loess Plateau of China. Ecological Applications, 2010, 20, 1126-1135.	1.8	32
45	Identification of Pns6, a putative movement protein of RRSV, as a silencing suppressor. Virology Journal, 2010, 7, 335.	1.4	30
46	Testing biodiversity-ecosystem functioning relationship in the world's largest grassland: overview of the IMGRE project. Landscape Ecology, 2015, 30, 1723-1736.	1.9	30
47	Roles of Small RNAs in Virus-Plant Interactions. Viruses, 2019, 11, 827.	1.5	28
48	Rice ragged stunt virus segment S6-encoded nonstructural protein Pns6 complements cell-to-cell movement of Tobacco mosaic virus-based chimeric virus. Virus Research, 2010, 152, 176-179.	1.1	25
49	Climate change and landscape fragmentation jeopardize the population viability of the Siberian tiger (Panthera tigris altaica). Landscape Ecology, 2014, 29, 621-637.	1.9	23
50	A Space-For-Time (SFT) Substitution Approach to Studying Historical Phenological Changes in Urban Environment. PLoS ONE, 2012, 7, e51260.	1.1	22
51	Knowledge-driven institutional change: An empirical study on combating desertification in northern china from 1949 to 2004. Journal of Environmental Management, 2012, 110, 254-266.	3.8	20
52	Spatial patterns of soil nutrients, plant diversity, and aboveground biomass in the Inner Mongolia grassland: before and after a biodiversity removal experiment. Landscape Ecology, 2015, 30, 1737-1750.	1.9	19
53	Identification of Pns12 as the second silencing suppressor of Rice gall dwarf virus. Science China Life Sciences, 2011, 54, 201-208.	2.3	15
54	Landscape Connectivity Shapes the Spread Pattern of the Rice Water Weevil: A Case Study from Zhejiang, China. Environmental Management, 2011, 47, 254-262.	1.2	14

#	Article	IF	CITATIONS
55	Rice Stripe Mosaic Virus–Encoded P4 Is a Weak Suppressor of Viral RNA Silencing and Is Required for Disease Symptom Development. Molecular Plant-Microbe Interactions, 2020, 33, 412-422.	1.4	14
56	Declining Oxygen Level as an Emerging Concern to Global Cities. Environmental Science & Technology, 2021, 55, 7808-7817.	4.6	14
57	Arms race between rice and viruses: a review of viral and host factors. Current Opinion in Virology, 2021, 47, 38-44.	2.6	11
58	Distribution pattern of allergenic plants in the Beijing metropolitan region. Aerobiologia, 2013, 29, 217-231.	0.7	10
59	Spatiotemporal patterns and ecological consequences of a fragmented landscape created by damming. PeerJ, 2021, 9, e11416.	0.9	7
60	Decoupling species richness variation and spatial turnover in beta diversity across a fragmented landscape. PeerJ, 2019, 7, e6714.	0.9	6
61	Recent advances and emerging trends in antiviral defense networking in rice. Crop Journal, 2021, 9, 553-563.	2.3	6
62	Rice Ragged Stunt Virus Propagation and Infection on Rice Plants. Bio-protocol, 2018, 8, e3060.	0.2	6
63	Defense and counter-defense in rice–virus interactions. Phytopathology Research, 2019, 1, .	0.9	5
64	A convergence research perspective on graduate education for sustainable urban systems science. Npj Urban Sustainability, 2021, 1, .	3.7	5
65	Towards Quantitatively Understanding the Complexity of Social-Ecological Systems—From Connection to Consilience. International Journal of Disaster Risk Science, 2017, 8, 343-356.	1.3	4
66	Detecting the Interaction of Double-stranded RNA Binding Protein, Viral Protein and Primary miRNA Transcript by Co-immunoprecipitation in planta. Bio-protocol, 2018, 8, e2840.	0.2	0
67	Rapid and Specific Purification of Argonaute–Small RNA Complexes from Rice for Slicer Activity. Methods in Molecular Biology, 2022, 2400, 139-147.	0.4	0