

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1220937/publications.pdf Version: 2024-02-01

MIN FIL

#	Article	IF	CITATIONS
1	Molecularly imprinted colloidal array with multi-boronic acid sites for glycoprotein detection under neutral pH. Journal of Colloid and Interface Science, 2022, 607, 1163-1172.	9.4	11
2	The yolk-shell nanorod structure of Ni3Se2@C electrodes boosting charge transfer and cyclability in high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 615, 133-140.	9.4	51
3	Surface imprinted core–shell nanorod for selective extraction of glycoprotein. Journal of Colloid and Interface Science, 2022, 615, 597-605.	9.4	19
4	Facile growth of hierarchical SnO2@PPy composites on carbon cloth as all-solid-state flexible supercapacitors. Journal of Alloys and Compounds, 2022, 906, 164275.	5.5	56
5	General Synthesis of Two-Dimensional Porous Metal Oxides/Hydroxides for Microwave Absorbing Applications. Inorganic Chemistry, 2022, 61, 678-687.	4.0	8
6	Insight into Spodiumâ€"ï€ Bonding Characteristics of the MX2â<ï€ (M = Zn, Cd and Hg; X = Cl, Br and I) Complexes—A Theoretical Study. Molecules, 2022, 27, 2885.	3.8	4
7	CdS Nanorods with an Optimized ZnS Coating as Composite Photocatalysts for Enhanced Water Splitting under Solar Light Irradiation. ACS Applied Nano Materials, 2022, 5, 9747-9753.	5.0	5
8	Carbon cloth supported flower-like porous nickel-based electrodes boosting ion/charge transfer characteristics of flexible supercapacitors. Carbon, 2022, 199, 520-528.	10.3	55
9	pH-Responsive molecularly imprinted hollow spheres for selective separation of ribavirin from water samples. Chemical Engineering Journal, 2022, 450, 138064.	12.7	34
10	Ultralight Flexible Electrodes of Nitrogenâ€Đoped Carbon Macrotube Sponges for Highâ€Performance Supercapacitors. Small, 2021, 17, e2004827.	10.0	59
11	In-situ growth of MnCo2O4 hollow spheres on nickel foam as pseudocapacitive electrodes for supercapacitors. Journal of Colloid and Interface Science, 2021, 587, 56-63.	9.4	60
12	Facile synthesis of V2O5/graphene composites as advanced electrode materials in supercapacitors. Journal of Alloys and Compounds, 2021, 862, 158006.	5.5	40
13	Facile synthesis of strontium ferrite nanorods/graphene composites as advanced electrode materials for supercapacitors. Journal of Colloid and Interface Science, 2021, 588, 795-803.	9.4	33
14	One-step solid-state pyrolysis of bio-wastes to synthesize multi-hierarchical porous carbon for ultra-long life supercapacitors. Materials Chemistry Frontiers, 2021, 5, 2320-2327.	5.9	22
15	Microwave assisted growth of MnO2 on biomass carbon for advanced supercapacitor electrode materials. Journal of Materials Science, 2021, 56, 6987-6996.	3.7	14
16	Magnetic-graphene oxide based molecular imprinted polymers for selective extraction of glycoprotein at physiological pH. Polymer, 2021, 215, 123384.	3.8	27
17	Growth of MnCo2O4 hollow nano-spheres on activated carbon cloth for flexible asymmetric supercapacitors. Journal of Power Sources, 2021, 492, 229669.	7.8	51
18	Biomass activated carbon–derived imprinted polymer with multi-boronic acid sites for selective capture of glycoprotein. Journal of Colloid and Interface Science, 2021, 596, 225-232.	9.4	21

Min Fu

#	Article	IF	CITATIONS
19	Synthesis of the cathode and anode materials from discarded surgical masks for high-performance asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 603, 157-164.	9.4	16
20	Multifunctional pompon flower-like nickel ferrites as novel pseudocapacitive electrode materials and advanced absorbing materials. Ceramics International, 2020, 46, 850-856.	4.8	46
21	Microwave deposition synthesis of Ni(OH)2/sorghum stalk biomass carbon electrode materials for supercapacitors. Journal of Alloys and Compounds, 2020, 846, 156376.	5.5	57
22	Microwave-assisted synthesis of MoS2/graphene composites for supercapacitors. Journal of Materials Science, 2020, 55, 16385-16393.	3.7	28
23	In situ growth of manganese ferrite nanorods on graphene for supercapacitors. Ceramics International, 2020, 46, 28200-28205.	4.8	33
24	A close-packed imprinted colloidal array for naked-eye detection of glycoproteins under physiological pH. Biosensors and Bioelectronics, 2019, 142, 111499.	10.1	27
25	Protein recognition by polydopamine-based molecularly imprinted hollow spheres. Biosensors and Bioelectronics, 2019, 142, 111492.	10.1	53
26	Biomass waste derived multi-hierarchical porous carbon combined with CoFe2O4 as advanced electrode materials for supercapacitors. Journal of Alloys and Compounds, 2019, 782, 952-960.	5.5	65
27	Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon, 2019, 141, 748-757.	10.3	108
28	Oneâ€step <i>in situ</i> growth of magnesium ferrite nanorods on graphene and their microwaveâ€absorbing properties. Applied Organometallic Chemistry, 2018, 32, e4017.	3.5	27
29	A colorimetric sensor of H ₂ O ₂ based on Co ₃ O ₄ –montmorillonite nanocomposites with peroxidase activity. New Journal of Chemistry, 2018, 42, 1501-1509.	2.8	79
30	High-Strength Nanocomposite Hydrogels with Swelling-Resistant and Anti-Dehydration Properties. Polymers, 2018, 10, 1025.	4.5	23
31	One-step preparation of one dimensional nickel ferrites/graphene composites for supercapacitor electrode with excellent cycling stability. Journal of Power Sources, 2018, 396, 41-48.	7.8	73
32	High strength and anti-fatigue nanocomposite hydrogels prepared via self-initiated free radical polymerization triggered by daylight. New Journal of Chemistry, 2018, 42, 11796-11803.	2.8	15
33	Preparation of urchin-like strontium ferrites as microwave absorbing materials. Materials Letters, 2017, 209, 425-428.	2.6	20
34	One-step in situ synthesis of strontium ferrites and strontium ferrites/graphene composites as microwave absorbing materials. RSC Advances, 2017, 7, 40650-40657.	3.6	29
35	NiFe2O4 porous nanorods/graphene composites as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 2017, 248, 292-298.	5.2	34
36	Vapor diffusion synthesis of CoFe ₂ O ₄ hollow sphere/graphene composites as absorbing materials. Journal of Materials Chemistry A, 2014, 2, 735-744.	10.3	276

Min Fu

#	Article	IF	CITATIONS
37	One-step vapor diffusion synthesis of uniform CdS quantum dots/reduced graphene oxide composites as efficient visible-light photocatalysts. RSC Advances, 2014, 4, 23242.	3.6	27
38	In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites. Materials Characterization, 2013, 86, 303-315.	4.4	51
39	Preparation of NiFe2O4 nanorod–graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties. Journal of Materials Chemistry A, 2013, 1, 5577.	10.3	334
40	Microemulsionâ€mediated solvothermal synthesis of hollow Co–Ni ferrite nanoparticle tubes and their magnetic properties. Micro and Nano Letters, 2013, 8, 68-69.	1.3	5