William David Tolbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1220849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Definition of an Antibody-Dependent Cellular Cytotoxicity Response Implicated in Reduced Risk for HIV-1 Infection. Journal of Virology, 2014, 88, 12895-12906.	1.5	108
2	Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Reports, 2022, 38, 110210.	2.9	96
3	An Asymmetric Opening of HIV-1 Envelope Mediates Antibody-Dependent Cellular Cytotoxicity. Cell Host and Microbe, 2019, 25, 578-587.e5.	5.1	93
4	A Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection. Cell Reports, 2022, 38, 110368.	2.9	82
5	Identification of Near-Pan-neutralizing Antibodies against HIV-1 by Deconvolution of Plasma Humoral Responses. Cell, 2018, 173, 1783-1795.e14.	13.5	80
6	Co-receptor Binding Site Antibodies Enable CD4-Mimetics to Expose Conserved Anti-cluster A ADCC Epitopes on HIV-1 Envelope Glycoproteins. EBioMedicine, 2016, 12, 208-218.	2.7	65
7	Cocrystal Structures of Antibody N60-i3 and Antibody JR4 in Complex with gp120 Define More Cluster A Epitopes Involved in Effective Antibody-Dependent Effector Function against HIV-1. Journal of Virology, 2015, 89, 8840-8854.	1.5	51
8	Paring Down HIV Env: Design and Crystal Structure of a Stabilized Inner Domain of HIV-1 gp120 Displaying a Major ADCC Target of the A32 Region. Structure, 2016, 24, 697-709.	1.6	46
9	Two Families of Env Antibodies Efficiently Engage Fc-Gamma Receptors and Eliminate HIV-1-Infected Cells. Journal of Virology, 2019, 93, .	1.5	44
10	Mechanism of Human S-Adenosylmethionine Decarboxylase Proenzyme Processing As Revealed by the Structure of the S68A Mutant,. Biochemistry, 2003, 42, 2386-2395.	1.2	42
11	Design of a Potent Antibiotic Peptide Based on the Active Region of Human Defensin 5. Journal of Medicinal Chemistry, 2015, 58, 3083-3093.	2.9	41
12	The HIV-1 Env gp120 Inner Domain Shapes the Phe43 Cavity and the CD4 Binding Site. MBio, 2020, 11, .	1.8	37
13	3-Deoxy- d - manno -octulosonate-8-phosphate synthase from Escherichia coli . Model of binding of phospho enol pyruvate and d -arabinose-5-phosphate 1 1Edited by D. Rees. Journal of Molecular Biology, 2000, 301, 233-238.	2.0	33
14	Antibody-Induced Internalization of HIV-1 Env Proteins Limits Surface Expression of the Closed Conformation of Env. Journal of Virology, 2019, 93, .	1.5	32
15	Molecular basis for epitope recognition by non-neutralizing anti-gp41 antibody F240. Scientific Reports, 2016, 6, 36685.	1.6	31
16	Targeting the Late Stage of HIV-1 Entry for Antibody-Dependent Cellular Cytotoxicity: Structural Basis for Env Epitopes in the C11 Region. Structure, 2017, 25, 1719-1731.e4.	1.6	31
17	CD4 Incorporation into HIV-1 Viral Particles Exposes Envelope Epitopes Recognized by CD4-Induced Antibodies. Journal of Virology, 2019, 93, .	1.5	29
18	The HIV-1 Antisense Protein ASP Is a Transmembrane Protein of the Cell Surface and an Integral Protein of the Viral Envelope. Journal of Virology, 2019, 93, .	1.5	27

#	Article	IF	CITATIONS
19	Engineered ACE2-Fc counters murine lethal SARS-CoV-2 infection through direct neutralization and Fc-effector activities. Science Advances, 2022, 8, .	4.7	27
20	A New Family of Small-Molecule CD4-Mimetic Compounds Contacts Highly Conserved Aspartic Acid 368 of HIV-1 gp120 and Mediates Antibody-Dependent Cellular Cytotoxicity. Journal of Virology, 2019, 93, .	1.5	26
21	Antigen-Induced Allosteric Changes in a Human IgG1 Fc Increase Low-Affinity FcÎ ³ Receptor Binding. Structure, 2020, 28, 516-527.e5.	1.6	23
22	Structural Basis for Epitopes in the gp120 Cluster A Region that Invokes Potent Effector Cell Activity. Viruses, 2019, 11, 69.	1.5	20
23	Defining rules governing recognition and Fc-mediated effector functions to the HIV-1 co-receptor binding site. BMC Biology, 2020, 18, 91.	1.7	20
24	Boosting with AIDSVAX B/E Enhances Env Constant Region 1 and 2 Antibody-Dependent Cellular Cytotoxicity Breadth and Potency. Journal of Virology, 2020, 94, .	1.5	19
25	A Highly Conserved gp120 Inner Domain Residue Modulates Env Conformation and Trimer Stability. Journal of Virology, 2016, 90, 8395-8409.	1.5	15
26	Design of ultrahigh-affinity and dual-specificity peptide antagonists of MDM2 and MDMX for P53 activation and tumor suppression. Acta Pharmaceutica Sinica B, 2021, 11, 2655-2669.	5.7	15
27	From Rhesus macaque to human: structural evolutionary pathways for immunoglobulin G subclasses. MAbs, 2019, 11, 709-724.	2.6	14
28	Systematic mutational analysis of human neutrophil α-defensin HNP4. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 835-844.	1.4	11
29	Nebulized delivery of a broadly neutralizing SARS-CoV-2 RBD-specific nanobody prevents clinical, virological, and pathological disease in a Syrian hamster model of COVID-19. MAbs, 2022, 14, 2047144.	2.6	10
30	Stabilizing the HIV-1 Envelope Glycoprotein State 2A Conformation. Journal of Virology, 2021, 95, .	1.5	9
31	Crystallization and preliminary crystallographic studies of 3-deoxy-D-manno-octulosonate-8-phosphate synthase fromEscherichia coli. Proteins: Structure, Function and Bioinformatics, 1996, 24, 407-408.	1.5	8
32	Optimization of Small Molecules That Sensitize HIV-1 Infected Cells to Antibody-Dependent Cellular Cytotoxicity. ACS Medicinal Chemistry Letters, 2020, 11, 371-378.	1.3	8
33	Induction of Fc-Mediated Effector Functions Against a Stabilized Inner Domain of HIV-1 gp120 Designed to Selectively Harbor the A32 Epitope Region. Frontiers in Immunology, 2019, 10, 677.	2.2	7
34	Recognition Patterns of the C1/C2 Epitopes Involved in Fc-Mediated Response in HIV-1 Natural Infection and the RV114 Vaccine Trial. MBio, 2020, 11, .	1.8	6
35	Incorporating the Cluster A and V1V2 Targets into a Minimal Structural Unit of the HIV-1 Envelope to Elicit a Cross-Clade Response with Potent Fc-Effector Functions. Vaccines, 2021, 9, 975.	2.1	5
36	Near-Pan-neutralizing, Plasma Deconvoluted Antibody N49P6 Mimics Host Receptor CD4 in Its Quaternary Interactions with the HIV-1 Envelope Trimer. MBio, 2021, 12, e0127421.	1.8	4

#	Article	IF	CITATIONS
37	Crystallization and preliminary crystallographic studies of the anthranilate synthase partial complex fromSalmonella typhimurium. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 305-306.	2.5	3
38	Across Functional Boundaries: Making Nonneutralizing Antibodies To Neutralize HIV-1 and Mediate Fc-Mediated Effector Killing of Infected Cells. MBio, 2021, 12, e0140521.	1.8	3
39	Effects of gp120 Inner Domain (ID2) Immunogen Doses on Elicitation of Anti-HIV-1 Functional Fc-Effector Response to C1/C2 (Cluster A) Epitopes in Mice. Microorganisms, 2020, 8, 1490.	1.6	1
40	Structure and Fc-Effector Function of Rhesusized Variants of Human Anti-HIV-1 IgG1s. Frontiers in Immunology, 2021, 12, 787603.	2.2	1