List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1220786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of calcium ions and degree of oxidation on the structural, physicochemical, and in-vitro release properties of resveratrol-loaded oxidized gellan gum hydrogel beads. International Journal of Biological Macromolecules, 2022, 196, 54-62.	3.6	10
2	Designing a Highly Stable Enzyme–Graphene Oxide Biohybrid as a Sensitive Biorecognition Module for Biosensor Fabrication with Superior Performance and Stability. ACS Sustainable Chemistry and Engineering, 2022, 10, 2971-2983.	3.2	4
3	Effects of Sourdough Fermentation and an Innovative Compound Improver on the Baking Performance, Nutritional Quality, and Antistaling Property of Whole Wheat Bread. ACS Food Science & Technology, 2022, 2, 825-835.	1.3	6
4	One-Step Synthesis of Cross-Linked Esterified Starch and Its Properties. Applied Sciences (Switzerland), 2022, 12, 4075.	1.3	5
5	An enhanced pH-sensitive carrier based on alginate-Ca-EDTA in a set-type W1/O/W2 double emulsion model stabilized with WPI-EGCG covalent conjugates for probiotics colon-targeted release. Food Hydrocolloids, 2021, 113, 106460.	5.6	57
6	Biotechnology and bioengineering of pullulanase: state of the art and perspectives. World Journal of Microbiology and Biotechnology, 2021, 37, 43.	1.7	15
7	Preparation, physicochemical characterization and in vitro release behavior of resveratrol-loaded oxidized gellan gum/resistant starch hydrogel beads. Carbohydrate Polymers, 2021, 260, 117794.	5.1	49
8	Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus) Tj ETQq0 0 0 rgBT WPI-EGCG covalent conjugate nanoparticles. Food Hydrocolloids, 2021, 116, 106658.	7 /Overlock 5.6	k 10 Tf 50 4 66
9	Structural characterization, anticancer, hypoglycemia and immune activities of polysaccharides from Russula virescens. International Journal of Biological Macromolecules, 2021, 184, 380-392.	3.6	35
10	Preparation of hydroxybutyl starch with a high degree of substitution and its application in temperature-sensitive hydrogels. Food Chemistry, 2021, 355, 129472.	4.2	20
11	Spiral–Dextrin Complex Crystals: Efficient Approach for Colon-Targeted Resveratrol Delivery. Journal of Agricultural and Food Chemistry, 2021, 69, 474-482.	2.4	10
12	Effects of octenyl succinic anhydride groups distribution on the storage and shear stability of Pickering emulsions formulated by modified rice starch. Carbohydrate Polymers, 2020, 228, 115389.	5.1	50
13	Preparation and characterization of pH-responsive Pickering emulsion stabilized by grafted carboxymethyl starch nanoparticles. International Journal of Biological Macromolecules, 2020, 143, 401-412.	3.6	46
14	Co-encapsulation of Vitamin C and β-Carotene in liposomes: Storage stability, antioxidant activity, and in vitro gastrointestinal digestion. Food Research International, 2020, 136, 109587.	2.9	87
15	Pickering Emulsion-Based Microreactors for Size-Selective Interfacial Enzymatic Catalysis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 950.	2.0	9
16	Stability of trypsin inhibitor isolated from potato fruit juice against pH and heating treatment and in vitro gastrointestinal digestion. Food Chemistry, 2020, 328, 127152.	4.2	16
17	pH-Responsive Emulsions with β-Cyclodextrin/Vitamin E Assembled Shells for Controlled Delivery of Polyunsaturated Fatty Acids. Journal of Agricultural and Food Chemistry, 2019, 67, 11931-11941.	2.4	22
18	Preparation and structural properties of amylose complexes with quercetin and their preliminary evaluation in delivery application. International Journal of Food Properties, 2019, 22, 1445-1462.	1.3	22

#	Article	IF	CITATIONS
19	A comparison study on polysaccharides extracted from <i>Fructus Mori</i> using different methods: structural characterization and glucose entrapment. Food and Function, 2019, 10, 3684-3695.	2.1	61
20	Effect of quinoa flour on baking performance, antioxidant properties and digestibility of wheat bread. Food Chemistry, 2019, 294, 87-95.	4.2	89
21	Biomimetic Mineralization Inducing Lipase–Metal–Organic Framework Nanocomposite for Pickering Interfacial Biocatalytic System. ACS Sustainable Chemistry and Engineering, 2019, 7, 7127-7139.	3.2	66
22	Construction of Novel Enzyme–Graphene Oxide Catalytic Interface with Improved Enzymatic Performance and Its Assembly Mechanism. ACS Applied Materials & Interfaces, 2019, 11, 11349-11359.	4.0	22
23	Modulation of starch nanoparticle surface characteristics for the facile construction of recyclable Pickering interfacial enzymatic catalysis. Green Chemistry, 2019, 21, 2412-2427.	4.6	39
24	Fine structure, crystalline and physicochemical properties of waxy corn starch treated by ultrasound irradiation. Ultrasonics Sonochemistry, 2019, 51, 350-358.	3.8	98
25	The chemical structure and biological activities of a novel polysaccharide obtained from Fructus Mori and its zinc derivative. Journal of Functional Foods, 2019, 54, 64-73.	1.6	54
26	Different variations in structures of A- and B-type starches subjected to microwave treatment and their relationships with digestibility. LWT - Food Science and Technology, 2019, 99, 179-187.	2.5	71
27	Facile synthesis of starch-based nanoparticle stabilized Pickering emulsion: its pH-responsive behavior and application for recyclable catalysis. Green Chemistry, 2018, 20, 1538-1550.	4.6	83
28	Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickering Emulsions with Ultrasound Treatment: Interfacial Adsorption/Arrangement Properties. Journal of Agricultural and Food Chemistry, 2018, 66, 4449-4457.	2.4	80
29	Modulation of Cyclodextrin Particle Amphiphilic Properties to Stabilize Pickering Emulsion. Journal of Agricultural and Food Chemistry, 2018, 66, 228-237.	2.4	58
30	Distribution of acetyl groups in acetylated waxy maize starches prepared in aqueous solution with two different alkaline concentrations. Food Hydrocolloids, 2018, 79, 491-497.	5.6	10
31	Encapsulation of Vitamin E and Soy Isoflavone Using Spiral Dextrin: Comparative Structural Characterization, Release Kinetics, and Antioxidant Capacity during Simulated Gastrointestinal Tract. Journal of Agricultural and Food Chemistry, 2018, 66, 10598-10607.	2.4	21
32	Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickering Emulsions with Ultrasound Treatment: Effect of Ionic Strength on the Freeze–Thaw Stability. Journal of Agricultural and Food Chemistry, 2018, 66, 8363-8370.	2.4	46
33	Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. Food Hydrocolloids, 2017, 69, 473-482.	5.6	134
34	Comparative Structural Characterization of Spiral Dextrin Inclusion Complexes with Vitamin E or Soy Isoflavone. Journal of Agricultural and Food Chemistry, 2017, 65, 8744-8753.	2.4	24
35	Structural changes of waxy and normal maize starches modified by heat moisture treatment and their relationship with starch digestibility. Carbohydrate Polymers, 2017, 177, 232-240.	5.1	91
36	Characterization and Drug Delivery Properties of OSA Starch-Based Nanoparticles Prepared in [C ₃ OHmim]Ac-in-Oil Microemulsions System. ACS Sustainable Chemistry and Engineering, 2017, 5, 9517-9526.	3.2	36

#	Article	IF	CITATIONS
37	Preparation and properties of octenyl succinate β-cyclodextrin and its application as an emulsion stabilizer. Food Chemistry, 2017, 218, 116-121.	4.2	43
38	Determination of Solubility of Starch in Selected Ionic Liquids by Turbidimetry. Asian Journal of Chemistry, 2016, 28, 1361-1366.	0.1	2
39	Effects of Lecithin Addition on the Properties of Extruded Maize Starch. Journal of Food Processing and Preservation, 2016, 40, 20-28.	0.9	15
40	Synthesis of starch nanoparticles in a novel microemulsion with two ILs substituting two phases. Journal of Materials Science, 2016, 51, 7085-7092.	1.7	17
41	Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties. Carbohydrate Polymers, 2016, 138, 192-200.	5.1	50
42	Starch nanoparticles prepared in a two ionic liquid based microemulsion system and their drug loading and release properties. RSC Advances, 2016, 6, 4751-4757.	1.7	33
43	Synthesis and characterization of amylose–zinc inclusion complexes. Carbohydrate Polymers, 2016, 137, 314-320.	5.1	29
44	Effect of molecular structure on emulsifying properties of sugar beet pulp pectin. Food Hydrocolloids, 2016, 54, 99-106.	5.6	120
45	Preparation of environmentâ€friendly pectin from sugar beet pulp and assessment of its emulsifying capacity. International Journal of Food Science and Technology, 2015, 50, 1324-1330.	1.3	17
46	Effect of gum arabic on freeze-thaw stability, pasting and rheological properties of tapioca starch and its derivatives. Food Hydrocolloids, 2015, 51, 355-360.	5.6	83
47	Preparation and Characterization of Debranched-Starch/Phosphatidylcholine Inclusion Complexes. Journal of Agricultural and Food Chemistry, 2015, 63, 634-641.	2.4	63
48	Esterification of sugar beet pectin using octenyl succinic anhydride and its effect as an emulsion stabilizer. Food Hydrocolloids, 2015, 49, 53-60.	5.6	47
49	Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water. Food Chemistry, 2015, 168, 302-310.	4.2	144
50	Preparation and characterization of starch nanoparticles in ionic liquid-in-oil microemulsions system. Industrial Crops and Products, 2014, 52, 105-110.	2.5	58
51	Preparation, characterization, and thermal stability of Î ² -cyclodextrin/soybean lecithin inclusion complex. Carbohydrate Polymers, 2014, 101, 1027-1032.	5.1	139
52	Preparation of Starch Nanoparticles in a Water-in-Ionic Liquid Microemulsion System and Their Drug Loading and Releasing Properties. Journal of Agricultural and Food Chemistry, 2014, 62, 8214-8220.	2.4	58
53	Two-Step Method of Enzymatic Synthesis of Starch Laurate in Ionic Liquids. Journal of Agricultural and Food Chemistry, 2013, 61, 9882-9891.	2.4	50
54	Preparation and Properties of Enzyme-Modified Cassava Starch–Zinc Complexes. Journal of Agricultural and Food Chemistry, 2013, 61, 4631-4638.	2.4	56

#	Article	IF	CITATIONS
55	Effect of lysine and glycine on pasting and rheological properties of maize starch. Food Research International, 2012, 49, 612-617.	2.9	38
56	Preparation of Acetylated Waxy, Normal, and High-Amylose Maize Starches with Intermediate Degrees of Substitution in Aqueous Solution and Their Properties. Journal of Agricultural and Food Chemistry, 2012, 60, 9468-9475.	2.4	61
57	Ionic liquids as solvents for dissolution of corn starch and homogeneous synthesis of fatty-acid starch esters without catalysts. Carbohydrate Polymers, 2012, 89, 1215-1221.	5.1	64
58	Lipase-catalyzed Synthesis of Starch Palmitate in Mixed Ionic Liquids. Journal of Agricultural and Food Chemistry, 2012, 60, 9273-9279.	2.4	78
59	Homogeneous synthesis and characterization of starch acetates in ionic liquid without catalysts. Starch/Staerke, 2012, 64, 37-44.	1.1	37
60	Effect of enzymatic pretreatment on the synthesis and properties of phosphorylated amphoteric starch. Carbohydrate Polymers, 2012, 88, 917-925.	5.1	12
61	Characteristics and application of enzyme-modified carboxymethyl starch in sausages. LWT - Food Science and Technology, 2011, 44, 1993-1998.	2.5	21
62	Effect of enzymeâ€modified carboxymethyl starch as a fat replacer on the functional properties of sausages. Starch/Staerke, 2011, 63, 661-667.	1.1	6
63	Immobilization of urease on dialdehyde porous starch. Starch/Staerke, 2010, 62, 652-657.	1.1	22
64	Effect of Ultrasonic Treatment on the Physicochemical Properties of Maize Starches Differing in Amylose Content. Starch/Staerke, 2008, 60, 646-653.	1.1	169
65	Effect of Microwave Radiation on the Physicochemical Properties of Normal Maize, Waxy Maize and Amylomaize V Starches. Starch/Staerke, 2006, 58, 468-474.	1.1	110