Yating Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1220505/publications.pdf

Version: 2024-02-01

686830 642321 23 815 13 23 citations h-index g-index papers 23 23 23 1071 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cellulose Sponge Supported Palladium Nanoparticles as Recyclable Cross-Coupling Catalysts. ACS Applied Materials & Distribution (2017), 9, 17155-17162.	4.0	124
2	Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chemical Engineering Journal, 2018, 338, 1-7.	6.6	87
3	Biodegradable regenerated cellulose-dispersed composites with improved properties via a pickering emulsion process. Carbohydrate Polymers, 2018, 179, 86-92.	5.1	65
4	Poly(lactic acid)/cellulose nanocrystal composites via the Pickering emulsion approach: Rheological, thermal and mechanical properties. International Journal of Biological Macromolecules, 2019, 137, 197-204.	3.6	63
5	Tuning the morphology and adsorption capacity of Al-MIL-101 analogues with Fe3+ for phosphorus removal from water. Journal of Colloid and Interface Science, 2020, 560, 321-329.	5.0	59
6	Mechanically flexible, waterproof, breathable cellulose/polypyrrole/polyurethane composite aerogels as wearable heaters for personal thermal management. Chemical Engineering Journal, 2020, 402, 126222.	6.6	59
7	Facile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant properties. Cellulose, 2017, 24, 3815-3823.	2.4	55
8	Chemical crosslinking reinforced flexible cellulose nanofiber-supported cryogel. Cellulose, 2018, 25, 573-582.	2.4	53
9	Facile preparation of polysaccharide-based sponges and their potential application in wound dressing. Journal of Materials Chemistry B, 2018, 6, 634-640.	2.9	50
10	Facile Fabrication of Robust and Stretchable Cellulose Nanofibers/Polyurethane Hybrid Aerogels. ACS Sustainable Chemistry and Engineering, 2020, 8, 8977-8985.	3.2	39
11	Facile fabrication of thiol-modified cellulose sponges for adsorption of Hg2+ from aqueous solutions. Cellulose, 2018, 25, 3025-3035.	2.4	38
12	Fabrication of Thermoresponsive Polymer-Functionalized Cellulose Sponges: Flexible Porous Materials for Stimuli-Responsive Catalytic Systems. ACS Applied Materials & Enterfaces, 2018, 10, 27831-27839.	4.0	32
13	Poly(lactic acid)/carbon nanotube composites with enhanced electrical conductivity via a two-step dispersion strategy. Composites Communications, 2022, 30, 101087.	3.3	21
14	New insights into mechanistic photoisomerization of ethylene-bridged azobenzene from ab initio multiple spawning simulation. Journal of Chemical Physics, 2017, 146, 064308.	1.2	13
15	Thermally conductive poly(lactic acid)/boron nitride composites via regenerated cellulose assisted Pickering emulsion approach. Journal of Materials Science and Technology, 2022, 101, 146-154.	5.6	13
16	Regenerated chitin reinforced polyhydroxybutyrate composites via Pickering emulsion template with improved rheological, thermal, and mechanical properties. Composites Communications, 2021, 25, 100655.	3.3	11
17	Quantitative analysis of factors determining the enzymatic degradation of poly(lactic acid). International Journal of Biological Macromolecules, 2022, 209, 1703-1709.	3.6	10
18	Exclusive formation of poly(lactide) stereocomplexes with enhanced melt stability via regenerated cellulose assisted Pickering emulsion approach. Composites Communications, 2022, 32, 101138.	3.3	8

YATING WANG

#	Article	IF	CITATION
19	Title is missing!. International Journal of Peptide Research and Therapeutics, 2002, 9, 5-10.	0.1	5
20	Acrylonitrile-butadiene-styrene-based composites derived from "fish-net―inspired Pickering emulsion for high-performance electromagnetic interference shielding and thermal management. Composites Communications, 2022, 30, 101085.	3.3	5
21	Rigid and conductive lightweight regenerated cellulose/carbon nanotubes/acrylonitrile–butadiene–styrene nanocomposites constructed via a Pickering emulsion process. Journal of Applied Polymer Science, 2022, 139, 51964.	1.3	2
22	Mechanical Properties of a Novel Modular Joint of Single-Layer Aluminium Alloy Lattice Shell. KSCE Journal of Civil Engineering, 2022, 26, 1214-1227.	0.9	2
23	Appraisal of green fluorescent protein as a model substrate for seryl-histidine dipeptide cleaving agent. International Journal of Peptide Research and Therapeutics, 2002, 9, 5-10.	0.1	1