Mark E Warchol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12203360/publications.pdf

Version: 2024-02-01

136950 175258 3,004 60 32 citations h-index g-index papers

68 68 68 2104 docs citations times ranked citing authors all docs

52

#	Article	IF	CITATIONS
1	Dynamic patterns of YAP1 expression and cellular localization in the developing and injured utricle. Scientific Reports, 2021, 11, 2140.	3.3	9
2	Mechanical overstimulation causes acute injury and synapse loss followed by fast recovery in lateral-line neuromasts of larval zebrafish. ELife, 2021, 10, .	6.0	10
3	Programmed Cell Death Recruits Macrophages Into the Developing Mouse Cochlea. Frontiers in Cell and Developmental Biology, 2021, 9, 777836.	3.7	7
4	Vascular endothelial growth factor is required for regeneration of auditory hair cells in the avian inner ear. Hearing Research, 2020, 385, 107839.	2.0	17
5	Macrophages Respond Rapidly to Ototoxic Injury of Lateral Line Hair Cells but Are Not Required for Hair Cell Regeneration. Frontiers in Cellular Neuroscience, 2020, 14, 613246.	3.7	17
6	Lack of Fractalkine Receptor on Macrophages Impairs Spontaneous Recovery of Ribbon Synapses After Moderate Noise Trauma in C57BL/6 Mice. Frontiers in Neuroscience, 2019, 13, 620.	2.8	50
7	Development of hair cell phenotype and calyx nerve terminals in the neonatal mouse utricle. Journal of Comparative Neurology, 2019, 527, 1913-1928.	1.6	28
8	Interactions between Macrophages and the Sensory Cells of the Inner Ear. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a033555.	6.2	29
9	The endocochlear potential as an indicator of reticular lamina integrity after noise exposure in mice. Hearing Research, 2018, 361, 138-151.	2.0	17
10	Genetic disruption of fractalkine signaling leads to enhanced loss of cochlear afferents following ototoxic or acoustic injury. Journal of Comparative Neurology, 2018, 526, 824-835.	1.6	44
11	ADAM10 and \hat{I}^3 -secretase regulate sensory regeneration in the avian vestibular organs. Developmental Biology, 2017, 428, 39-51.	2.0	11
12	Two cell populations participate in clearance of damaged hair cells from the sensory epithelia of the inner ear. Hearing Research, 2017, 352, 70-81.	2.0	81
13	Ephrins and Ephs in cochlear innervation and implications for advancing cochlear implant function. Laryngoscope, 2015, 125, 1189-1197.	2.0	2
14	Macrophage recruitment and epithelial repair following hair cell injury in the mouse utricle. Frontiers in Cellular Neuroscience, 2015, 9, 150.	3.7	51
15	Cochlear progenitor number is controlled through mesenchymal FGF receptor signaling. ELife, 2015, 4, .	6.0	63
16	Selective Deletion of Cochlear Hair Cells Causes Rapid Age-Dependent Changes in Spiral Ganglion and Cochlear Nucleus Neurons. Journal of Neuroscience, 2015, 35, 7878-7891.	3.6	69
17	Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion. Journal of Neuroscience, 2015, 35, 15050-15061.	3.6	124
18	Cisplatin exposure damages resident stem cells of the mammalian inner Ear. Developmental Dynamics, 2014, 243, 1328-1337.	1.8	24

#	Article	IF	CITATIONS
19	The Transcriptome of Utricle Hair Cell Regeneration in the Avian Inner Ear. Journal of Neuroscience, 2014, 34, 3523-3535.	3.6	98
20	Retinal and cochlear toxicity of drugs. Current Opinion in Neurology, 2012, 25, 76-85.	3.6	5
21	Differentiation of the Lateral Compartment of the Cochlea Requires a Temporally Restricted FGF20 Signal. PLoS Biology, 2012, 10, e1001231.	5.6	97
22	Depletion of Resident Macrophages Does Not Alter Sensory Regeneration in the Avian Cochlea. PLoS ONE, 2012, 7, e51574.	2.5	41
23	Sensory regeneration in the vertebrate inner ear: Differences at the levels of cells and species. Hearing Research, 2011, 273, 72-79.	2.0	136
24	Missense mutations in Otopetrin 1 affect subcellular localization and inhibition of purinergic signaling in vestibular supporting cells. Molecular and Cellular Neurosciences, 2011, 46, 655-661.	2.2	34
25	Identification of direct downstream targets of Dlx5 during early inner ear development. Human Molecular Genetics, 2011, 20, 1262-1273.	2.9	37
26	An RNA Interference-Based Screen of Transcription Factor Genes Identifies Pathways Necessary for Sensory Regeneration in the Avian Inner Ear. Journal of Neuroscience, 2011, 31, 4535-4543.	3.6	31
27	Cellular mechanisms of aminoglycoside ototoxicity. Current Opinion in Otolaryngology and Head and Neck Surgery, 2010, 18, 454-458.	1.8	83
28	Maintained Expression of the Planar Cell Polarity Molecule Vangl2 and Reformation of Hair Cell Orientation in the Regenerating Inner Ear. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 395-406.	1.8	27
29	Identification of the Hair Cell Soma-1 Antigen, HCS-1, as Otoferlin. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 573-586.	1.8	44
30	Supporting Cells Eliminate Dying Sensory Hair Cells to Maintain Epithelial Integrity in the Avian Inner Ear. Journal of Neuroscience, 2010, 30, 12545-12556.	3.6	90
31	Cisplatin Ototoxicity Blocks Sensory Regeneration in the Avian Inner Ear. Journal of Neuroscience, 2010, 30, 3473-3481.	3.6	39
32	Regulation of Cellular Calcium in Vestibular Supporting Cells by Otopetrin 1. Journal of Neurophysiology, 2010, 104, 3439-3450.	1.8	40
33	Expression of the Gata3 transcription factor in the acoustic ganglion of the developing avian inner ear. Journal of Comparative Neurology, 2009, 516, 507-518.	1.6	22
34	Expression of the Pax2 transcription factor is associated with vestibular phenotype in the avian inner ear. Developmental Neurobiology, 2009, 69, 191-202.	3.0	12
35	Epigenetic Influences on Sensory Regeneration: Histone Deacetylases Regulate Supporting Cell Proliferation in the Avian Utricle. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 341-353.	1.8	34
36	Toward a Systems Biology of Mouse Inner Ear Organogenesis: Gene Expression Pathways, Patterns and Network Analysis. Genetics, 2007, 177, 631-653.	2.9	59

#	Article	IF	CITATIONS
37	Characterization of supporting cell phenotype in the avian inner ear: Implications for sensory regeneration. Hearing Research, 2007, 227, 11-18.	2.0	33
38	Large Scale Gene Expression Profiles of Regenerating Inner Ear Sensory Epithelia. PLoS ONE, 2007, 2, e525.	2.5	71
39	Expression of GATA3 and tenascin in the avian vestibular maculae: Normative patterns and changes during sensory regeneration. Journal of Comparative Neurology, 2007, 500, 646-657.	1.6	33
40	Applying genomics to the avian inner ear: Development of subtractive cDNA resources for exploring sensory function and hair cell regeneration. Genomics, 2006, 87, 801-808.	2.9	19
41	Asymmetric Localization of Vangl2 and Fz3 Indicate Novel Mechanisms for Planar Cell Polarity in Mammals. Journal of Neuroscience, 2006, 26, 5265-5275.	3.6	283
42	Ephrin A2 May Play a Role in Axon Guidance during Hair Cell Regeneration. Laryngoscope, 2005, 115, 1021-1025.	2.0	14
43	Overexpression of <i>Bclâ€2</i> prevents neomycinâ€induced hair cell death and caspaseâ€9 activation in the adult mouse utricle <i>in vitro</i> . Journal of Neurobiology, 2004, 60, 89-100.	3.6	73
44	Critical signaling events during the aminoglycosideâ€induced death of sensory hair cells <i>in vitro</i> . Journal of Neurobiology, 2004, 61, 250-266.	3.6	101
45	Gene expression differences in quiescent versus regenerating hair cells of avian sensory epithelia: implications for human hearing and balance disorders. Human Molecular Genetics, 2003, 12, 1261-1272.	2.9	59
46	Caspase Inhibitors Promote Vestibular Hair Cell Survival and Function after Aminoglycoside Treatment <i>In Vivo</i> . Journal of Neuroscience, 2003, 23, 6111-6122.	3.6	95
47	Inhibition of Caspases Prevents Ototoxic and Ongoing Hair Cell Death. Journal of Neuroscience, 2002, 22, 1218-1227.	3.6	127
48	Cell Density and N-Cadherin Interactions Regulate Cell Proliferation in the Sensory Epithelia of the Inner Ear. Journal of Neuroscience, 2002, 22, 2607-2616.	3.6	68
49	Lectin from Griffonia simplicifolia identifies an immature-appearing subpopulation of sensory hair cells in the avian utricle. Journal of Neurocytology, 2001, 30, 253-264.	1.5	12
50	Ongoing Cell Death and Immune Influences on Regeneration in the Vestibular Sensory Organs. Annals of the New York Academy of Sciences, 2001, 942, 34-45.	3.8	8
51	The Supporting-Cell Antigen: A Receptor-Like Protein Tyrosine Phosphatase Expressed in the Sensory Epithelia of the Avian Inner Ear. Journal of Neuroscience, 1999, 19, 4815-4827.	3.6	27
52	Immune cytokines and dexamethasone influence sensory regeneration in the avian vestibular periphery., 1999, 28, 889-900.		58
53	Macrophage secretory products influence the survival of statoacoustic neurons. NeuroReport, 1999, 10, 665-668.	1.2	15
54	Macrophage activity in organ cultures of the avian cochlea: Demonstration of a resident population and recruitment to sites of hair cell lesions. Journal of Neurobiology, 1997, 33, 724-734.	3.6	67

#	ARTICLE	IF	CITATION
55	Regenerative Proliferation in Organ Cultures of the Avian Cochlea: Identification of the Initial Progenitors and Determination of the Latency of the Proliferative Response. Journal of Neuroscience, 1996, 16, 5466-5477.	3.6	125
56	Growth Factors as Potential Drugs for the Sensory Epithelia of the Ear. Novartis Foundation Symposium, 1996, 196, 167-187.	1.1	7
57	Supporting cells in isolated sensory epithelia of avian utricles proliferate in serum-free culture. NeuroReport, 1995, 6, 981-984.	1.2	27
58	Supporting cells in avian vestibular organs proliferate in serum-free culture. Hearing Research, 1993, 71, 28-36.	2.0	34
59	Hair cell development. Current Opinion in Neurobiology, 1993, 3, 32-37.	4.2	17
60	Hair Cell Regeneration: The Identities of Progenitor Cells, Potential Triggers and Instructive Cues. Novartis Foundation Symposium, 1991, 160, 103-130.	1.1	40