Raymundo Arroyave

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1220318/publications.pdf

Version: 2024-02-01

203 papers 6,284 citations

43 h-index 98622 67 g-index

209 all docs

209 docs citations

times ranked

209

5059 citing authors

#	Article	IF	CITATIONS
1	Bayesian Calibration of Multiple Coupled Simulation Models for Metal Additive Manufacturing: A Bayesian Network Approach. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2022, 8, .	0.7	5
2	Data Science, Machine Learning and Artificial Intelligence Applied to Metals and Alloys Research: Past, Present, and Future., 2022,, 609-621.		2
3	On the importance of microstructure information in materials design: PSP vs PP. Acta Materialia, 2022, 223, 117471.	3.8	11
4	Microstructure classification in the unsupervised context. Acta Materialia, 2022, 223, 117434.	3.8	10
5	Towards stacking fault energy engineering in FCC high entropy alloys. Acta Materialia, 2022, 224, 117472.	3.8	44
6	A differential evaporation model to predict chemistry change of additively manufactured metals. Materials and Design, 2022, 213, 110328.	3.3	4
7	Machine learning-assisted high-throughput exploration of interface energy space in multi-phase-field model with CALPHAD potential. Materials Theory, 2022, 6, .	2.2	5
8	Machine-learning enabled thermodynamic model for the design of new rare-earth compounds. Acta Materialia, $2022, 229, 117759$.	3.8	13
9	Laser Powder Bed Fusion of Defect-Free NiTi Shape Memory Alloy Parts with Superior Tensile Superelasticity. Acta Materialia, 2022, 229, 117781.	3.8	79
10	Efficient machine-learning model for fast assessment of elastic properties of high-entropy alloys. Acta Materialia, 2022, 232, 117924.	3.8	39
11	Hybrid microstructure-defect printability map in laser powder bed fusion additive manufacturing. Computational Materials Science, 2022, 209, 111401.	1.4	5
12	Review: additive manufacturing of pure tungsten and tungsten-based alloys. Journal of Materials Science, 2022, 57, 9769-9806.	1.7	8
13	Accelerated materials design using batch Bayesian optimization: A case study for solving the inverse problem from materials microstructure to process specification. Computational Materials Science, 2022, 210, 111417.	1.4	10
14	Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach. ACS Applied Materials & Samp; Interfaces, 2022, 14, 25907-25919.	4.0	8
15	Multi-objective materials bayesian optimization with active learning of design constraints: Design of ductile refractory multi-principal-element alloys. Acta Materialia, 2022, 236, 118133.	3.8	22
16	Metric-driven search for structurally stable inorganic compounds. Acta Materialia, 2021, 202, 437-447.	3.8	6
17	Effect of Pd alloying on structural, electronic and magnetic properties of L10 Fe–Ni. Journal of Physics Condensed Matter, 2021, 33, 154003.	0.7	O
18	Laser-based additive manufacturing of a binary Ni-5 wt.%Nb alloy. Journal of Manufacturing Processes, 2021, 62, 720-728.	2.8	7

#	Article	IF	CITATIONS
19	Microstructure-Based Modeling of the Effect of Inclusion on the Bendability of Advanced High Strength Dual-Phase Steels. Metals, 2021, 11, 431.	1.0	5
20	A Top-Down Characterization of NiTi Single-Crystal Inelastic Properties within Confidence Bounds through Bayesian Inference. Shape Memory and Superelasticity, 2021, 7, 50-64.	1.1	5
21	Competing Interactions between Mesoscale Length-Scales, Order-Disorder, and Martensitic Transformation in Ferromagnetic Shape Memory Alloys. Acta Materialia, 2021, 206, 116616.	3.8	16
22	Efficiently exploiting process-structure-property relationships in material design by multi-information source fusion. Acta Materialia, 2021, 206, 116619.	3.8	18
23	High temperature oxidation behavior of disordered (Ti0.5Zr0.5)2AlC MAX phase via a Machine Learning-Augmented DFT approach. Materials Letters: X, 2021, 10, 100062.	0.3	1
24	A printability assessment framework for fabricating low variability nickel-niobium parts using laser powder bed fusion additive manufacturing. Rapid Prototyping Journal, 2021, 27, 1737-1748.	1.6	6
25	Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework. Acta Materialia, 2021, 215, 117017.	3.8	78
26	Martensitic Transformation in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi>Fe</mml:mi></mml:mrow><mn 115704.<="" 127,="" 2021,="" letters,="" physical="" review="" td=""><td>nl:m2:øw><</td><td>mml2mi>x</td></mn></mml:mrow></mml:mrow></mml:mrow></mml:math>	nl:m 2:ø w><	mm l2 mi>x
27	An efficient framework for printability assessment in Laser Powder Bed Fusion metal additive manufacturing. Additive Manufacturing, 2021, 46, 102018.	1.7	9
28	Effect of composition and phase diagram features on printability and microstructure in laser powder bed fusion: Development and comparison of processing maps across alloy systems. Additive Manufacturing, 2021, 47, 102258.	1.7	3
29	A rigorous test and improvement of the Eagar-Tsai model for melt pool characteristics in laser powder bed fusion additive manufacturing. Additive Manufacturing, 2021, 47, 102300.	1.7	2
30	Effect of heat treatments on the microstructure and mechanical properties of an ultra-high strength martensitic steel fabricated via laser powder bed fusion additive manufacturing. Additive Manufacturing, 2021, 47, 102255.	1.7	7
31	Adaptive active subspace-based efficient multifidelity materials design. Materials and Design, 2021, 209, 110001.	3.3	17
32	Incommensurate transition-metal dichalcogenides <i>via</i> mechanochemical reshuffling of binary precursors. Nanoscale Advances, 2021, 3, 4065-4071.	2.2	4
33	High-throughput reaction engineering to assess the oxidation stability of MAX phases. Npj Computational Materials, 2021, 7, .	3.5	13
34	Computational Design of Compositionally Graded Alloys for Property Monotonicity. Journal of Mechanical Design, Transactions of the ASME, 2021, 143, .	1.7	4
35	The BAREFOOT Optimization Framework. Integrating Materials and Manufacturing Innovation, 2021, 10, 644-660.	1.2	4
36	Bayesian optimization with adaptive surrogate models for automated experimental design. Npj Computational Materials, 2021, 7, .	3.5	27

#	Article	IF	CITATIONS
37	Nanocalorimetry and ab initio study of ternary elements in CuZr-based shape memory alloy. Acta Materialia, 2020, 182, 29-38.	3.8	9
38	Bayesian probabilistic prediction of precipitation behavior in Ni-Ti shape memory alloys. Computational Materials Science, 2020, 172, 109334.	1.4	9
39	Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities. Materials Horizons, 2020, 7, 843-854.	6.4	77
40	An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: Densification, microstructure, and mechanical properties. Acta Materialia, 2020, 186, 199-214.	3.8	151
41	Design of alumina-forming austenitic stainless steel using genetic algorithms. Materials and Design, 2020, 186, 108198.	3.3	15
42	The effect of chemical disorder on defect formation and migration in disordered max phases. Acta Materialia, 2020, 184, 50-58.	3.8	15
43	Finite interface dissipation phase field modeling of Ni–Nb under additive manufacturing conditions. Acta Materialia, 2020, 185, 320-339.	3.8	83
44	On the complexity of solid-state diffusion in highly concentrated alloys and the sluggish diffusion core-effect. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 68, 101713.	0.7	17
45	Uncertainty propagation in a multiscale CALPHAD-reinforced elastochemical phase-field model. Acta Materialia, 2020, 183, 452-470.	3.8	23
46	Navigating the design space of inorganic materials synthesis using statistical methods and machine learning. Dalton Transactions, 2020, 49, 11480-11488.	1.6	24
47	Atomic Hourglass and Thermometer Based on Diffusion of a Mobile Dopant in VO ₂ . Journal of the American Chemical Society, 2020, 142, 15513-15526.	6.6	23
48	Phase-Field Study of Thermomigration in 3-D IC Micro Interconnects. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 1466-1473.	1.4	6
49	Materials Design Through Batch Bayesian Optimization with Multisource Information Fusion. Jom, 2020, 72, 4431-4443.	0.9	15
50	Impact of particle arrays on phase separation composition patterns. Journal of Chemical Physics, 2020, 152, 224902.	1,2	7
51	Investigation of the discontinuous precipitation of U-Nb alloys via thermodynamic analysis and phase-field modeling. Computational Materials Science, 2020, 175, 109573.	1.4	13
52	Uncertainty Quantification and Propagation in Computational Materials Science and Simulation-Assisted Materials Design. Integrating Materials and Manufacturing Innovation, 2020, 9, 103-143.	1,2	35
53	Semi-supervised learning approaches to class assignment in ambiguous microstructures. Acta Materialia, 2020, 188, 49-62.	3.8	24
54	Statistical modelling of microsegregation in laser powder-bed fusion. Philosophical Magazine Letters, 2020, 100, 271-282.	0.5	4

#	Article	IF	CITATIONS
55	Intellectual Community as a Bridge of Interdisciplinary Graduate Education in Materials Data Science. MRS Advances, 2020, 5, 355-362.	0.5	O
56	Accelerated design of Fe-based soft magnetic materials using machine learning and stochastic optimization. Acta Materialia, 2020, 194, 144-155.	3.8	60
57	Uncertainty analysis of microsegregation during laser powder bed fusion. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 034002.	0.8	14
58	Functionally Graded Materials through robotics-inspired path planning. Materials and Design, 2019, 182, 107975.	3.3	28
59	Assessing printability maps in additive manufacturing of metal alloys. Acta Materialia, 2019, 176, 199-210.	3.8	146
60	Efficient use of multiple information sources in material design. Acta Materialia, 2019, 180, 260-271.	3.8	21
61	Uncertainty Propagation via Probability Measure Optimized Importance Weights with Application to Parametric Materials Models., 2019,,.		4
62	Experiment Design Frameworks for Accelerated Discovery of Targeted Materials Across Scales. Frontiers in Materials, 2019, 6, .	1.2	21
63	Exploration of the microstructure space in TiAlZrN ultra-hard nanostructured coatings. Acta Materialia, 2019, 174, 459-476.	3.8	16
64	Uncertainty quantification and propagation in CALPHAD modeling. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 034003.	0.8	14
65	Uncertainty quantification of the parameters and predictions of a phenomenological constitutive model for thermally induced phase transformation in Ni–Ti shape memory alloys. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 034001.	0.8	12
66	Systems Approaches to Materials Design: Past, Present, and Future. Annual Review of Materials Research, 2019, 49, 103-126.	4.3	49
67	Machine Learning-Directed Navigation of Synthetic Design Space: A Statistical Learning Approach to Controlling the Synthesis of Perovskite Halide Nanoplatelets in the Quantum-Confined Regime. Chemistry of Materials, 2019, 31, 3281-3292.	3.2	40
68	Design of multifunctional supercapacitor electrodes using an informatics approach. Molecular Systems Design and Engineering, 2019, 4, 654-663.	1.7	17
69	On the fast kinetics of B2–L21 ordering in Ni-Co-Mn-In metamagnetic shape memory alloys. Journal of Alloys and Compounds, 2019, 781, 479-489.	2.8	10
70	Bayesian uncertainty quantification and information fusion in CALPHAD-based thermodynamic modeling. Acta Materialia, 2019, 164, 636-647.	3.8	41
71	A proof of concept: Thermodynamics of aluminum – transition metal highly concentrated alloys. Journal of Alloys and Compounds, 2019, 781, 595-605.	2.8	10
72	Effects of composition and crystallographic ordering on the ferromagnetic transition in Ni Co Mn In magnetic shape memoryÂalloys. Acta Materialia, 2019, 166, 630-637.	3.8	8

#	Article	IF	CITATIONS
73	Processing of novel pseudomorphic Cu–Mo hierarchies in thin films. Materials Research Letters, 2019, 7, 1-11.	4.1	26
74	Numerical and experimental analysis of heat distribution in the laser powder bed fusion of Ti-6Al-4V. IISE Transactions, 2019, 51, 136-152.	1.6	62
75	Efficient exploration of the High Entropy Alloy composition-phase space. Acta Materialia, 2018, 152, 41-57.	3.8	62
76	Microstructural refinement in an ultra-high strength martensitic steel via equal channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 57-64.	2.6	29
77	Probing the entropy hypothesis in highly concentrated alloys. Acta Materialia, 2018, 148, 263-279.	3.8	39
78	Probing Structural and Magnetic Instabilities and Hysteresis in Heuslers by Density Functional Theory Calculations (Phys. Status Solidi B 2/2018). Physica Status Solidi (B): Basic Research, 2018, 255, 1870108.	0.7	2
79	Firstâ€Principles Characterization of Equilibrium Vacancy Concentration in Metamagnetic Shape Memory Alloys: An Example of Ni ₂ MnGa. Physica Status Solidi (B): Basic Research, 2018, 255, 1700523.	0.7	6
80	Out-of-plane ordering in quaternary MAX alloys: an alloy theoretic perspective. Materials Research Letters, 2018, 6, 1-12.	4.1	5
81	Probing Structural and Magnetic Instabilities and Hysteresis in Heuslers by Density Functional Theory Calculations. Physica Status Solidi (B): Basic Research, 2018, 255, 1700296.	0.7	11
82	On the microstructural origins of martensitic transformation arrest in a NiCoMnIn magnetic shape memory alloy. Acta Materialia, 2018, 142, 95-106.	3.8	67
83	Multi-Information Source Fusion and Optimization to Realize ICME: Application to Dual-Phase Materials. Journal of Mechanical Design, Transactions of the ASME, 2018, 140, .	1.7	32
84	Influence of deposition temperature on the properties of sputtered films grown from a Cu2O CdO TeO2 composite target: Electronic properties of CdTe2O5. Superlattices and Microstructures, 2018, 123, 403-413.	1.4	1
85	On the printability and transformation behavior of nickel-titanium shape memory alloys fabricated using laser powder-bed fusion additive manufacturing. Journal of Manufacturing Processes, 2018, 35, 672-680.	2.8	75
86	Multi-objective Bayesian materials discovery: Application on the discovery of precipitation strengthened NiTi shape memory alloys through micromechanical modeling. Materials and Design, 2018, 160, 810-827.	3.3	83
87	On the interfacial phase growth and vacancy evolution during accelerated electromigration in Cu/Sn/Cu microjoints. Acta Materialia, 2018, 160, 185-198.	3.8	35
88	Interdisciplinary Research on Designing Engineering Material Systems: Results From a National Science Foundation Workshop. Journal of Mechanical Design, Transactions of the ASME, 2018, 140, .	1.7	11
89	Multivariate Calibration and Experimental Validation of a 3D Finite Element Thermal Model for Laser Powder Bed Fusion Metal Additive Manufacturing. Integrating Materials and Manufacturing Innovation, 2018, 7, 116-135.	1.2	36
90	Computational Design of Gradient Paths in Additively Manufactured Functionally Graded Materials. Journal of Mechanical Design, Transactions of the ASME, 2018, 140, .	1.7	19

#	Article	IF	CITATIONS
91	Properties and Decomposition of Heusler Alloys. Energy Technology, 2018, 6, 1478-1490.	1.8	24
92	Phase transformations in equiatomic CuZr shape memory thin films analyzed by differential nanocalorimetry. Acta Materialia, 2018, 159, 320-331.	3.8	15
93	Uncertainty Propagation Analysis of Computational Models in Laser Powder Bed Fusion Additive Manufacturing Using Polynomial Chaos Expansions. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	1.3	41
94	Strain-induced suppression of the miscibility gap in nanostructured Mg ₂ Si–Mg ₂ Sn solid solutions. Journal of Materials Chemistry A, 2018, 6, 17559-17570.	5.2	30
95	Glassy Phonon Heralds a Strain Glass State in a Shape Memory Alloy. Physical Review Letters, 2018, 120, 245701.	2.9	24
96	Nucleation-controlled hysteresis in unstrained hydrothermal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">V</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> particles. Physical Review Materials, 2018, 2, .	0.9	10
97	Autonomous efficient experiment design for materials discovery with Bayesian model averaging. Physical Review Materials, 2018, 2, .	0.9	58
98	A Constraint Satisfaction Algorithm for the Generalized Inverse Phase Stability Problem. Journal of Mechanical Design, Transactions of the ASME, 2017, 139, .	1.7	9
99	Bayesian Calibration and Uncertainty Quantification for a Physics-Based Precipitation Model of Nickel–Titanium Shape-Memory Alloys. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	1.3	28
100	Real-time atomistic observation of structural phase transformations in individual hafnia nanorods. Nature Communications, 2017, 8, 15316.	5.8	59
101	Data-Enabled Discovery and Design of Energy Materials (D3EM): Structure of An Interdisciplinary Materials Design Graduate Program. MRS Advances, 2017, 2, 1693-1698.	0.5	7
102	Spatial Control of Functional Response in 4D-Printed Active Metallic Structures. Scientific Reports, 2017, 7, 46707.	1.6	109
103	A data-driven machine learning approach to predicting stacking faulting energy in austenitic steels. Journal of Materials Science, 2017, 52, 11048-11076.	1.7	35
104	Looking Outwards from the "Central Science― An Interdisciplinary Perspective on Graduate Education in Materials Chemistry. ACS Symposium Series, 2017, , 65-89.	0.5	3
105	On the stochastic phase stability of Ti2AlC-Cr2AlC. Scientific Reports, 2017, 7, 5138.	1.6	16
106	A Sensory Material Approach for Reducing Variability in Additively Manufactured Metal Parts. Scientific Reports, 2017, 7, 3604.	1.6	55
107	Does aluminum play well with others? Intrinsic Al-A alloying behavior in 211/312 MAX phases. Materials Research Letters, 2017, 5, 170-178.	4.1	20
108	Study of the Isothermal Oxidation Process and Phase Transformations in B2-(Ni,Pt)Al/RENE-N5 System. Metals, 2016, 6, 208.	1.0	5

#	Article	IF	CITATIONS
109	Structural, physical and mechanical properties of Ti3(Al1â^'xSix)C2 solid solution with x=0â€"1. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 676, 197-208.	2.6	60
110	Revisiting thermodynamics and kinetic diffusivities of uranium–niobium with Bayesian uncertainty analysis. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2016, 55, 219-230.	0.7	46
111	Ab-initio investigation of the finite-temperatures structural, elastic, and thermodynamic properties of Ti3AlC2 and Ti3SiC2. Computational Materials Science, 2016, 124, 420-427.	1.4	9
112	High-throughput combinatorial study of the effect of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>M</mml:mi></mml:math> site alloying on the solid solution behavior of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>M</mml:mi><mml:m< td=""><td>1.1 n>2<td>38 l:mn></td></td></mml:m<></mml:msub></mml:mrow></mml:math>	1.1 n>2 <td>38 l:mn></td>	38 l:mn>
113	phases. Physical Review B, 2016, 94, . Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging. Journal of Phase Equilibria and Diffusion, 2016, 37, 469-480.	0.5	9
114	An inverse design framework for prescribing precipitation heat treatments from a target microstructure. Materials and Design, 2016, 107, 7-17.	3.3	12
115	The Inverse Phase Stability Problem as a Constraint Satisfaction Problem: Application to Materials Design. Jom, 2016, 68, 1385-1395.	0.9	8
116	Effect of ternary additions to structural properties of NiTi alloys. Computational Materials Science, 2016, 112, 347-355.	1.4	40
117	Tailored thermal expansion alloys. Acta Materialia, 2016, 102, 333-341.	3.8	92
118	Describing the deformation behaviour of TRIP and dual phase steels employing an irreversible thermodynamics formulation. Materials Science and Technology, 2015, 31, 1658-1663.	0.8	5
119	Stability analysis of the martensitic phase transformation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Co</mml:mi><mml:n .<="" 2015,="" 92,="" alloy.="" b,="" physical="" review="" td=""><td>nn12<td>nl:mn></td></td></mml:n></mml:msub></mml:mrow></mml:math>	nn 12 <td>nl:mn></td>	nl:mn>
120	Lattice vibrations boost demagnetization entropy in a shape-memory alloy. Physical Review B, 2015, 92, .	1.1	19
121	Computational Thermodynamics and Kinetics-Based ICME Framework for High-Temperature Shape Memory Alloys. Shape Memory and Superelasticity, 2015, 1, 429-449.	1.1	1
122	Multiple ferroic glasses via ordering. Acta Materialia, 2015, 101, 107-115.	3.8	45
123	Metal cluster-deposited graphene as an adsorptive material for m-xylene. New Journal of Chemistry, 2015, 39, 9650-9658.	1.4	19
124	Alloy Design Strategies Through Computational Thermodynamics and Kinetics Approaches. , 2015, , 461-470.		0
125	Constraint Satisfaction Approach to the Design of Multi-Component, Multi-Phase Alloys. , 2014, , .		2
126	Effect of Student-Led Undergraduate Research Experience on Learning and Attitudes A Practice in An Introductory Materials Science Course. Materials Research Society Symposia Proceedings, 2014, 1657, 38.	0.1	0

#	Article	IF	Citations
127	Prediction of processing maps for transient liquid phase diffusion bonding of Cu/Sn/Cu joints in microelectronics packaging. Microelectronics Reliability, 2014, 54, 1401-1411.	0.9	23
128	Computational thermodynamics of the CoNiGa high temperature shape memory alloy system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2014, 45, 167-177.	0.7	4
129	Early stage growth characteristics of Ag 3 Sn intermetallic compounds during solid–solid and solid–liquid reactions in the Ag–Sn interlayer system: Experiments and simulations. Journal of Alloys and Compounds, 2014, 617, 763-773.	2.8	53
130	First-principles calculation of the instability leading to giant inverse magnetocaloric effects. Physical Review B, 2014, 89, .	1.1	73
131	Confinement Effects on Evolution of Intermetallic Compounds During Metallurgical Joint Formation. Journal of Electronic Materials, 2014, 43, 2510-2520.	1.0	5
132	Ab-initio calculations of the elastic and finite-temperature thermodynamic properties of niobium- and magnesium hydrides. International Journal of Hydrogen Energy, 2014, 39, 15530-15539.	3.8	10
133	First-principles calculations of finite-temperature elastic properties of Ti2AlX (X=C or N). Computational Materials Science, 2013, 79, 296-302.	1.4	24
134	TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni–Ti–Hf and Ni–Ti–Zr shape memory alloys. Acta Materialia, 2013, 61, 6191-6206.	3.8	169
135	Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles. European Physical Journal B, 2013, 86, 1.	0.6	88
136	Phase-field simulations of intermetallic compound evolution in Cu/Sn solder joints under electromigration. Acta Materialia, 2013, 61, 7142-7154.	3.8	44
137	Commentary: Recent Advances in Ab Initio Thermodynamics of Materials. Jom, 2013, 65, 1499-1500.	0.9	0
138	Phase constitution effect on the ductility of low alloy multiphase transformation induced plasticity steels. Materials Science & Drocessing, 2013, 569, 137-143.	2.6	25
139	Computational Investigation of the Evolution of Intermetallic Compounds Affected by Microvoids During the Solid-State Aging Process in the Cu-Sn System. Journal of Electronic Materials, 2013, 42, 999-1009.	1.0	5
140	Development of a kinetic model for bainitic isothermal transformation in transformation-induced plasticity steels. Acta Materialia, 2013, 61, 2884-2894.	3.8	26
141	Magnetocaloric effects in Ni-Mn-Ga-Fe alloys using Monte Carlo simulations. Journal of Applied Physics, 2013, 113, 183904.	1.1	18
142	Hydrogen sorption in orthorhombic Mg hydride at ultra-low temperature. International Journal of Hydrogen Energy, 2013, 38, 8328-8341.	3.8	36
143	Stabilization of bcc Mg in Thin Films at Ambient Pressure: Experimental Evidence andab initioCalculations. Materials Research Letters, 2013, 1, 161-167.	4.1	25
144	Thermodynamic and mechanical stabilities of \hat{l}_{\pm} - and \hat{l}^2 -Ta4AlC3 via first-principles investigations. Journal of Applied Physics, 2013, 114, 213517.	1.1	4

#	Article	IF	Citations
145	Diffusion of In and Ga in TiN/HfO2/InGaAs nanofilms. Journal of Applied Physics, 2013, 114, .	1.1	20
146	Mass transport and thermal stability of TiN/Al2O3/InGaAs nanofilms. Journal of Applied Physics, 2012, 112, .	1.1	21
147	Gas-Alloy Interactions at Elevated Temperatures. Jom, 2012, 64, 1425-1425.	0.9	O
148	Experimental and computational study of the morphological evolution of intermetallic compound (Cu6Sn5) layers at the Cu/Sn interface under isothermal soldering conditions. Acta Materialia, 2012, 60, 5125-5134.	3.8	30
149	First-principles investigation of the Al–Si–Sr ternary system: Ground state determination and mechanical properties. Intermetallics, 2012, 21, 31-44.	1.8	19
150	On the limitations of the DFT+U approach to energetics of actinides. Computational Materials Science, 2012, 59, 48-56.	1.4	6
151	Thermodynamic analysis of two-stage heat treatment in TRIP steels. Acta Materialia, 2012, 60, 6120-6130.	3.8	22
152	Phase-field simulations of intermetallic compound growth in Cu/Sn/Cu sandwich structure under transient liquid phase bonding conditions. Acta Materialia, 2012, 60, 6278-6287.	3.8	95
153	A first-principles approach to transition states of diffusion. Journal of Physics Condensed Matter, 2012, 24, 305402.	0.7	9
154	A Firstâ€Principles Investigation of the Compositional Dependent Properties of Magnetic Shape Memory Heusler Alloys. Advanced Engineering Materials, 2012, 14, 530-546.	1.6	54
155	Spin excitations in Co ₂ NiGa under pressure from a theoretical approach. Annalen Der Physik, 2012, 524, 212-226.	0.9	4
156	Concurrent nucleation, formation and growth of two intermetallic compounds (Cu6Sn5 and Cu3Sn) during the early stages of lead-free soldering. Acta Materialia, 2012, 60, 923-934.	3.8	75
157	Multi-phase microstructure design of a low-alloy TRIP-assisted steel through a combined computational and experimental methodology. Acta Materialia, 2012, 60, 3022-3033.	3.8	71
158	The effect of electronic and magnetic valences on the martensitic transformation of CoNiGa shape memory alloys. Acta Materialia, 2012, 60, 3545-3558.	3.8	28
159	Finite-temperature elasticity of fcc Al: Atomistic simulations and ultrasonic measurements. Physical Review B, 2011, 84, .	1.1	37
160	Computational investigation of intermetallic compounds (Cu6Sn5 and Cu3Sn) growth during solid-state aging process. Computational Materials Science, 2011, 50, 1692-1700.	1.4	26
161	Thermodynamic modelling of the Ag–Cu–Ti ternary system. International Journal of Materials Research, 2011, 102, 286-297.	0.1	38
162	The U–Ti system: Strengths and weaknesses of the CALPHAD method. Journal of Nuclear Materials, 2011, 419, 177-185.	1.3	33

#	Article	IF	Citations
163	<i>Ab initio</i> iiinvestigation of Ti <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> Al(C,N) solid solutions. Physical Review B, 2011, 84, .	1.1	19
164	Thermodynamic study of the Np–Zr system. Journal of Nuclear Materials, 2011, 409, 1-8.	1.3	8
165	Effect of configurational order on the magnetic characteristics of Co-Ni-Ga ferromagnetic shape memory alloys. Physical Review B, 2011, 84, .	1.1	29
166	Ab initiostudy of the electronic, mechanical, and vibrational properties of different Al2Si2Sr crystalline phases. Physical Review B, 2011, 83, .	1.1	4
167	<i>Ab-initio</i> aprroach to the electronic, structural, elastic, and finite-temperature thermodynamic properties of Ti2AX (A = Al or Ga and X = C or N). Journal of Applied Physics, 2011, 110, .	1.1	35
168	Early stages of intermetallic compound formation and growth during lead-free soldering. Acta Materialia, 2010, 58, 4900-4910.	3.8	88
169	Investigation of the structural stability of Co2NiGa shape memory alloys via ab initio methods. Acta Materialia, 2010, 58, 5220-5231.	3.8	28
170	Formation and Growth of Intermetallic Compound Cu6Sn5 at Early Stages in Lead-Free Soldering. Journal of Electronic Materials, 2010, 39, 2574-2582.	1.0	37
171	Thermodynamic remodeling of the Co–Ga system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2010, 34, 189-195.	0.7	14
172	Multiphase Field Simulations of Intermetallic Compound Growth During Lead-Free Soldering. Journal of Electronic Materials, 2009, 38, 2525-2533.	1.0	26
173	Thermodynamic modeling of the Si–Sr system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 550-556.	0.7	10
174	Thermodynamics, lattice stability and defect structure of strontium silicides via first-principles calculations. Journal of Alloys and Compounds, 2009, 484, 822-831.	2.8	11
175	Open source software for materials and process modeling. Jom, 2008, 60, 32-39.	0.9	12
176	First-Principles Calculation of Self-Diffusion Coefficients. Physical Review Letters, 2008, 100, 215901.	2.9	231
177	Prediction of the glass forming ability in Cu–Zr binary and Cu–Zr–Ti ternary alloys. Intermetallics, 2008, 16, 27-33.	1.8	34
178	Phase equilibria, thermodynamics and solidification microstructures of Mg–Sn–Ca alloys, Part 1: Experimental investigation and thermodynamic modeling of the ternary Mg–Sn–Ca system. Intermetallics, 2008, 16, 299-315.	1.8	86
179	Phase stability inα- andβ-rhombohedral boron. Physical Review B, 2007, 75, .	1.1	64
180	Defect structures and ternary lattice site preference of the B2 phase in the Al–Ni–Ru system. Acta Materialia, 2007, 55, 4781-4787.	3.8	14

#	Article	IF	Citations
181	Thermodynamic properties of binary hcp solution phases from special quasirandom structures. Physical Review B, 2006, 74, .	1.1	122
182	Intermetallics in theMgâ^'Caâ^'Snternary system: Structural, vibrational, and thermodynamic properties from first principles. Physical Review B, 2006, 74, .	1.1	45
183	Thermodynamic modelling of the Zn–Zr system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30, 1-13.	0.7	57
184	Thermodynamic modeling of the Hf–Si–O system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30, 375-386.	0.7	98
185	First-principles calculations of the Zn–Zr system. Acta Materialia, 2006, 54, 473-482.	3.8	65
186	Finite-temperature thermodynamic and vibrational properties of Al–Ni–Y compounds via first-principles calculations. Acta Materialia, 2006, 54, 2291-2304.	3.8	34
187	Thermodynamic modeling of the Ca–Sn system based on finite temperature quantities from first-principles and experiment. Acta Materialia, 2006, 54, 4939-4951.	3.8	34
188	Ab initio thermodynamic properties of stoichiometric phases in the Ni–Al system. Acta Materialia, 2005, 53, 1809-1819.	3.8	96
189	Thermodynamic Modeling of the Binary Barium-Oxygen System. Journal of the American Ceramic Society, 2005, 88, 1943-1948.	1.9	4
190	Thermoelectric properties of epitaxial and topotaxial NaxCoO2 thin films. Materials Research Society Symposia Proceedings, 2005, 886, 1.	0.1	2
191	Structural and transport properties of epitaxial NaxCoO2 thin films. Applied Physics Letters, 2005, 87, 172104.	1.5	20
192	Modification of the thermodynamic model for the Mg–Zr system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2005, 29, 230-238.	0.7	33
193	B2 Phases and their Defect Structures: Part I. Ab Initio Enthalpy of Formation and Enthalpy of Mixing in the Al-Ni-Pt-Ru System. Materials Research Society Symposia Proceedings, 2004, 842, 239.	0.1	0
194	Ab initio lattice stability in comparison with CALPHAD lattice stability. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2004, 28, 79-90.	0.7	340
195	Metal substrate effects on the thermochemistry of active brazing interfaces. Acta Materialia, 2003, 51, 4871-4880.	3.8	52
196	Thermodynamic assessment of the Cu–Ti–Zr system. Journal of Alloys and Compounds, 2003, 351, 158-170.	2.8	102
197	Thermodynamic modeling of the Zrî—,O system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2002, 26, 95-118.	0.7	65
198	Erosion and Corrosion Mechanisms in Pneumatic Conveying of Direct Reduced Iron Pellets. , 1998, , 137-149.		0

#	Article	IF	CITATIONS
199	BAYESIAN CALIBRATIONOF A PHYSICAL MODEL FOR PLASTIC FLOW BEHAVIOR OF TRIP STEELS., 0,, 301-316.		O
200	Exploration of the Microstructure Space in Tialzrn Ultra-Hard Nanostructured Coatings. SSRN Electronic Journal, 0, , .	0.4	1
201	A Differential Evaporation Model to Predict Chemistry Change of Additively Manufactured Metals. SSRN Electronic Journal, 0, , .	0.4	0
202	Finite Interface Dissipation Phase Field Modeling of Ni-Nb Under Additive Manufacturing Conditions. SSRN Electronic Journal, 0, , .	0.4	3
203	Interactive Exploration of High-Dimensional Phase Diagrams. Jom, 0, , 1.	0.9	0