
Tianzhi Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12202247/publications.pdf Version: 2024-02-01

Γιλνζηι Υλν

#	Article	IF	CITATIONS
1	Amphiphilic cationic triblock polymers for p53-mediated triple-negative breast cancer gene therapy. Materials and Design, 2022, 219, 110758.	7.0	2
2	Cell-free protein synthesis of influenza virus hemagglutinin HA2-integrated virosomes for siRNA delivery. International Journal of Pharmaceutics, 2022, 623, 121890.	5.2	6
3	Virosome, a promising delivery vehicle for siRNA delivery and its novel preparation method. Journal of Drug Delivery Science and Technology, 2022, 74, 103490.	3.0	3
4	A dual-functional buformin-mimicking poly(amido amine) for efficient and safe gene delivery. Journal of Drug Targeting, 2020, 28, 923-932.	4.4	2
5	A biodegradable poly(amido amine) based on the antimicrobial polymer polyhexamethylene biguanide for efficient and safe gene delivery. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110355.	5.0	13
6	Cell-free synthesis of connexin 43-integrated exosome-mimetic nanoparticles for siRNA delivery. Acta Biomaterialia, 2019, 96, 517-536.	8.3	44
7	Validation of the stability of paracetamol in extemporaneously compounded suppositories. Journal of Pharmacy Practice and Research, 2019, 49, 219-223.	0.8	0
8	Nuclear localization signal peptide enhances transfection efficiency and decreases cytotoxicity of poly(agmatine/ <i>N</i> , <i>N</i> à€²â€cystamineâ€bisâ€acrylamide)/pDNA complexes. Journal of Cellular Biochemistry, 2019, 120, 16967-16977.	2.6	4
9	Nuclear delivery of plasmid DNA determines the efficiency of gene expression. Cell Biology International, 2019, 43, 789-798.	3.0	5
10	Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers. Acta Biomaterialia, 2019, 86, 15-40.	8.3	46
11	Zebrafish (Danio rerio) as a Viable Model to Study the Blood-Brain Barrier. Neuromethods, 2019, , 187-196.	0.3	1
12	Bioreducible poly(amido amine) copolymers derived from histamine and agmatine for highly efficient gene delivery. Polymer International, 2019, 68, 447-455.	3.1	7
13	Amphoteric poly(amido amine)s with adjustable balance between transfection efficiency and cytotoxicity for gene delivery. Colloids and Surfaces B: Biointerfaces, 2019, 175, 10-17.	5.0	12
14	Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. Acta Biomaterialia, 2018, 76, 1-20.	8.3	24
15	Functionalized extracellular vesicles as advanced therapeutic nanodelivery systems. European Journal of Pharmaceutical Sciences, 2018, 121, 34-46.	4.0	36
16	Verapamil and riluzole cocktail liposomes overcome pharmacoresistance by inhibiting P-glycoprotein in brain endothelial and astrocyte cells: A potent approach to treat amyotrophic lateral sclerosis. European Journal of Pharmaceutical Sciences, 2018, 120, 30-39.	4.0	31
17	Intracellular distribution and internalization pathways of guanidinylated bioresponsive poly(amido) Tj ETQq1 🔅	1 0.784314 r 9.1	gBT /Overloc
18	Thiol Michael addition reaction: a facile tool for introducing peptides into polymerâ€based gene	3.1	34

delivery systems. Polymer International, 2018, 67, 25-31.

3.134

Tianzhi Yang

#	Article	IF	CITATIONS
19	Exosome-based small RNA delivery: Progress and prospects. Asian Journal of Pharmaceutical Sciences, 2018, 13, 1-11.	9.1	71
20	Disulfideâ€bondâ€containing agamatineâ€cystaminebisacrylamide polymer demonstrates better transfection efficiency and lower cytotoxicity than polyethylenimine in NIH/3T3 cells. Journal of Cellular Biochemistry, 2018, 119, 1767-1779.	2.6	7
21	Comparison of exosome-mimicking liposomes with conventional liposomes for intracellular delivery of siRNA. International Journal of Pharmaceutics, 2018, 550, 100-113.	5.2	95
22	Dissolution enhancement of tadalafil by liquisolid technique. Pharmaceutical Development and Technology, 2017, 22, 77-89.	2.4	23
23	Molecular weight determination of a newly synthesized guanidinylated disulfide-containing poly(amido amine) by gel permeation chromatography. Asian Journal of Pharmaceutical Sciences, 2017, 12, 292-298.	9.1	9
24	Recent advances on extracellular vesicles in therapeutic delivery: Challenges, solutions, and opportunities. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 381-395.	4.3	45
25	Exploring the role of peptides in polymer-based gene delivery. Acta Biomaterialia, 2017, 60, 23-37.	8.3	21
26	Liquisolid technique and its applications in pharmaceutics. Asian Journal of Pharmaceutical Sciences, 2017, 12, 115-123.	9.1	64
27	Uptake Pathways of Guandinylated Disulfide Containing Polymers as Nonviral Gene Carrier Delivering DNA to Cells. Journal of Cellular Biochemistry, 2017, 118, 903-913.	2.6	3
28	Structure–Function Correlations of Poly(Amido Amine)s for Gene Delivery. Macromolecular Bioscience, 2017, 17, 1600297.	4.1	13
29	Delivery of Small Interfering RNA to Inhibit Vascular Endothelial Growth Factor in Zebrafish Using Natural Brain Endothelia Cell-Secreted Exosome Nanovesicles for the Treatment of Brain Cancer. AAPS Journal, 2017, 19, 475-486.	4.4	154
30	Novel guanidinylated bioresponsive poly(amidoamine)s designed for short hairpin RNA delivery. International Journal of Nanomedicine, 2016, Volume 11, 6651-6666.	6.7	23
31	Advance in bioequivalence assessment of topical dermatological products. Asian Journal of Pharmaceutical Sciences, 2016, 11, 700-707.	9.1	13
32	Factors influencing the nuclear targeting ability of nuclear localization signals. Journal of Drug Targeting, 2016, 24, 927-933.	4.4	35
33	Exosome Delivered Anticancer Drugs Across the Blood-Brain Barrier for Brain Cancer Therapy in Danio Rerio. Pharmaceutical Research, 2015, 32, 2003-2014.	3.5	762
34	<i>In vitro</i> evaluation of optimized liposomes for delivery of small interfering RNA. Journal of Liposome Research, 2014, 24, 270-279.	3.3	12
35	Microdialysis as a tool to determine the skin concentration of mometason furoate in rats. Die Pharmazie, 2014, 69, 787-91.	0.5	4
36	Comparative Studies on Chitosan and Polylactic-co-glycolic Acid Incorporated Nanoparticles of Low Molecular Weight Heparin. AAPS PharmSciTech, 2012, 13, 1309-1318.	3.3	14

Tianzhi Yang

#	Article	IF	CITATIONS
37	Alkanoylsucroses in nasal delivery of low molecular weight heparins: in-vivo absorption and reversibility studies in ratsâ€. Journal of Pharmacy and Pharmacology, 2010, 56, 53-60.	2.4	12
38	Complexation of a Poly-l-Arginine with Low Molecular Weight Heparin Enhances Pulmonary Absorption of the Drug. Pharmaceutical Research, 2008, 25, 936-948.	3.5	21
39	Evaluation of human nasal RPMI 2650 cells grown at an air–liquid interface as a model for nasal drug transport studies. Journal of Pharmaceutical Sciences, 2008, 97, 1165-1178.	3.3	76
40	Evaluation of bEnd5 cell line as an in vitro model for the blood–brain barrier under normal and hypoxic/aglycemic conditions. Journal of Pharmaceutical Sciences, 2007, 96, 3196-3213.	3.3	46
41	Protein Kinase C Family Members as a Target for Regulation of Blood–Brain Barrier Na,K,2Cl-Cotransporter During In Vitro Stroke Conditions and Nicotine Exposure. Pharmaceutical Research, 2006, 23, 291-302.	3.5	32
42	Positively charged polyethylenimines enhance nasal absorption of the negatively charged drug, low molecular weight heparin. Journal of Controlled Release, 2006, 115, 289-297.	9.9	96
43	Tetradecylmaltoside (TDM) enhancesin vitroandin vivointestinal absorption of enoxaparin, a low molecular weight heparin. Journal of Drug Targeting, 2005, 13, 29-38.	4.4	27
44	Cyclodextrins in Nasal Delivery of Low-Molecular-Weight Heparins: In Vivo and in Vitro Studies. Pharmaceutical Research, 2004, 21, 1127-1136.	3.5	67
45	Pulmonary Delivery of Low Molecular Weight Heparins. Pharmaceutical Research, 2004, 21, 2009-2016.	3.5	39
46	Chain Length-Dependent Effects of Alkylmaltosides on Nasal Absorption of Enoxaparin. Journal of Pharmaceutical Sciences, 2004, 93, 675-683.	3.3	31
47	Pulmonary absorption of insulin mediated by tetradecyl-beta-maltoside and dimethyl-beta-cyclodextrin. Pharmaceutical Research, 2003, 20, 1551-1557.	3.5	45
48	Effects of the permeability enhancers, tetradecylmaltoside and dimethyl-Î ² -cyclodextrin, on insulin movement across human bronchial epithelial cells (16HBE14oâ^'). European Journal of Pharmaceutical Sciences, 2003, 20, 27-34.	4.0	39