Theodor D Gurkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12199994/publications.pdf Version: 2024-02-01

THEODOR D CURKOV

#	Article	IF	CITATIONS
1	Dilatational and Shear Elasticity of Gel-like Protein Layers on Air/Water Interface. Langmuir, 2000, 16, 3703-3711.	3.5	194
2	Nanoemulsions obtained via bubble-bursting at a compound interface. Nature Physics, 2014, 10, 606-612.	16.7	85
3	Disjoining Pressure vs Thickness Isotherms of Thin Emulsion Films Stabilized by Proteins. Langmuir, 2001, 17, 8069-8077.	3.5	76
4	Interfacial layers from the protein HFBII hydrophobin: Dynamic surface tension, dilatational elasticity and relaxation times. Journal of Colloid and Interface Science, 2012, 376, 296-306.	9.4	72
5	Size Dependence of the Stability of Emulsion Drops Pressed against a Large Interface. Langmuir, 1999, 15, 6764-6769.	3.5	56
6	Spontaneous Cyclic Dimpling in Emulsion Films Due to Surfactant Mass Transfer between the Phases. Journal of Colloid and Interface Science, 1993, 159, 497-501.	9.4	52
7	Detachment of Oil Drops from Solid Surfaces in Surfactant Solutions:Â Molecular Mechanisms at a Moving Contact Lineâ€. Industrial & Engineering Chemistry Research, 2005, 44, 1309-1321.	3.7	50
8	Surface forces in model oil-in-water emulsions stabilized by proteins. Advances in Colloid and Interface Science, 2004, 108-109, 73-86.	14.7	41
9	Hydrodynamic Theory for Spontaneously Growing Dimple in Emulsion Films with Surfactant Mass Transfer. Journal of Colloid and Interface Science, 1997, 188, 313-324.	9.4	35
10	Surface Pressure and Elasticity of Hydrophobin HFBII Layers on the Air–Water Interface: Rheology Versus Structure Detected by AFM Imaging. Langmuir, 2013, 29, 6053-6067.	3.5	32
11	Gentle Film Trapping Technique with Application to Drop Entry Measurements. Langmuir, 2002, 18, 127-138.	3.5	31
12	Monolayers of Globular Proteins on the Air/Water Interface:Â Applicability of the Volmer Equation of State. Langmuir, 2003, 19, 7362-7369.	3.5	29
13	Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation. Advances in Colloid and Interface Science, 2018, 251, 80-96.	14.7	27
14	Kinetics of Cream Formation by the Mechanism of Consolidation in Flocculating Emulsions. Journal of Colloid and Interface Science, 2000, 230, 254-267.	9.4	21
15	Interactions in oil/water/oil films stabilized by β-lactoglobulin; role of the surface charge. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 99-108.	4.7	21
16	The interfacial bending moment: Thermodynamics and contributions of the electrostatic interactions. Colloids and Surfaces, 1991, 56, 149-176.	0.9	18
17	Energy of Adhesion of Human T Cells to Adsorption Layers of Monoclonal Antibodies Measured by a Film Trapping Technique. Biophysical Journal, 1998, 75, 545-556.	0.5	18
18	The van der Waals component of interfacial bending moment 2. Model development and numerical results. Colloids and Surfaces, 1991, 56, 119-148.	0.9	17

THEODOR D GURKOV

#	Article	IF	CITATIONS
19	Measurement of the Yield Stress of Gellike Protein Layers on Liquid Surfaces by Means of an Attached Particle. Langmuir, 2001, 17, 4556-4563.	3.5	12
20	Rheology of particle/water/oil three-phase dispersions: Electrostatic vs. capillary bridge forces. Journal of Colloid and Interface Science, 2018, 513, 515-526.	9.4	11
21	The van der Waals component of the interfacial bending moment 1. Contribution of the pressure tensor tails. Colloids and Surfaces, 1991, 56, 101-118.	0.9	8
22	Adsorption kinetics under the influence of barriers at the subsurface layer. Colloid and Polymer Science, 2011, 289, 1905-1915.	2.1	6
23	Kinetics of transfer of volatile amphiphiles (fragrances) from vapors to aqueous drops and vice versa: Interplay of diffusion and barrier mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126931.	4.7	6
24	MECHANICS AND THERMODYNAMICS OF INTERFACES, THIN LIQUID FILMS AND MEMBRANE. Journal of Dispersion Science and Technology, 1997, 18, 609-623.	2.4	5
25	Volatile Aroma Surfactants: The Evaluation of the Adsorption–Evaporation Behavior under Dynamic and Equilibrium Conditions. Langmuir, 2022, 38, 2793-2803.	3.5	5
26	Volatile surfactants: Characterization and areas of application. Current Opinion in Colloid and Interface Science, 2022, 60, 101592.	7.4	5