Pantcho Stoyanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12199287/publications.pdf

Version: 2024-02-01

567281 610901 27 563 15 24 citations h-index g-index papers 27 27 27 509 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microtribological Performance of Au–MoS2 and Ti–MoS2 Coatings with Varying Contact Pressure. Tribology Letters, 2010, 40, 199-211.	2.6	49
2	Friction and Wear Mechanisms of Tungsten–Carbon Systems: A Comparison of Dry and Lubricated Conditions. ACS Applied Materials & Lamp; Interfaces, 2013, 5, 6123-6135.	8.0	44
3	Nanoscale sliding friction phenomena at the interface of diamond-like carbon and tungsten. Acta Materialia, 2014, 67, 395-408.	7.9	44
4	Scaling Effects on Materials Tribology: From Macro to Micro Scale. Materials, 2017, 10, 550.	2.9	44
5	Experimental and Numerical Atomistic Investigation of the Third Body Formation Process in Dry Tungsten/Tungsten-Carbide Tribo Couples. Tribology Letters, 2013, 50, 67-80.	2.6	42
6	Scaling effects between micro- and macro-tribology for a Ti–MoS2 coating. Wear, 2012, 274-275, 149-161.	3.1	37
7	The running-in mechanisms of binary brass studied by in-situ topography measurements. Wear, 2013, 303, 465-472.	3.1	35
8	Microstructural and Tribological Behavior of Thermal Spray CrMnFeCoNi High Entropy Alloy Coatings. Journal of Thermal Spray Technology, 2022, 31, 1285-1301.	3.1	31
9	Microtribological performance of Au–MoS2 nanocomposite and Au/MoS2 bilayer coatings. Tribology International, 2012, 52, 144-152.	5.9	24
10	Micro-scale sliding contacts on Au and Au-MoS2 coatings. Surface and Coatings Technology, 2010, 205, 1449-1454.	4.8	22
11	Surface Softening in Metal–Ceramic Sliding Contacts: An Experimental and Numerical Investigation. ACS Nano, 2015, 9, 1478-1491.	14.6	22
12	Influence of humidity on the tribological performance of unmodified soybean and sunflower oils. Lubrication Science, 2011, 23, 301-311.	2.1	18
13	Microstructural and Mechanical Characterization of Mo-containing Stellite Alloys Produced by three Dimensional Printing. Procedia CIRP, 2016, 45, 167-170.	1.9	17
14	Micro-tribological performance of MoS2 lubricants with varying Au content. Surface and Coatings Technology, 2008, 203, 761-765.	4.8	16
15	Insights into the Tribological Characteristic of Cu-Based Coatings Under Extreme Contact Conditions. Jom, 2020, 72, 2191-2197.	1.9	16
16	Friction and Wear Characteristics of Single Crystal Ni-Based Superalloys at Elevated Temperatures. Tribology Letters, 2018, 66, 1.	2.6	15
17	Tribological Performance of High-Entropy Coatings (HECs): A Review. Materials, 2022, 15, 3699.	2.9	14
18	Microstructure, mechanical properties and friction behavior of magnetron-sputtered V-C coatings. Surface and Coatings Technology, 2017, 321, 366-377.	4.8	13

#	Article	IF	CITATIONS
19	Dependence of tribofilm characteristics on the running-in behavior of aluminum–silicon alloys. Journal of Materials Science, 2015, 50, 5524-5532.	3.7	12
20	Tribological Evaluation of Lead-Free MoS2-Based Solid Film Lubricants as Environmentally Friendly Replacements for Aerospace Applications. Lubricants, 2022, 10, 7.	2.9	11
21	Combining in situ and online approaches to monitor interfacial processes in lubricated sliding contacts. MRS Communications, 2016, 6, 301-308.	1.8	9
22	Tribological insights of Co- and Ni-based alloys in extreme conditions. Wear, 2021, 477, 203827.	3.1	9
23	Insights into the static friction behavior of Ni-based superalloys. Surface and Coatings Technology, 2018, 352, 634-641.	4.8	8
24	Tribological characteristics of Co-based plasma sprayed coating in extreme conditions. Results in Surfaces and Interfaces, 2021, 3, 100007.	2.4	5
25	Atomistic Insights Into Lubricated Tungsten/Diamond Sliding Contacts. Frontiers in Mechanical Engineering, 2019, 5, .	1.8	4
26	Achieving Ultra-Low Friction with Diamond/Metal Systems in Extreme Environments. Materials, 2021, 14, 3791.	2.9	2
27	In Situ Digital Holography for 3D Topography Analysis of Tribological Experiments. Microtechnology and MEMS, 2018, , 289-305.	0.2	0