Zhe Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12198412/publications.pdf Version: 2024-02-01

7hf Vin

#	Article	IF	CITATIONS
1	Advanced Carbon for Flexible and Wearable Electronics. Advanced Materials, 2019, 31, e1801072.	21.0	779
2	Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures. Advanced Functional Materials, 2017, 27, 1606066.	14.9	522
3	Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation. ACS Applied Materials & Interfaces, 2017, 9, 28596-28603.	8.0	270
4	Printable Smart Pattern for Multifunctional Energy-Management E-Textile. Matter, 2019, 1, 168-179.	10.0	172
5	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-1062.	6.3	170
6	Physical sensors for skinâ€inspired electronics. InformaÄnÃ-Materiály, 2020, 2, 184-211.	17.3	159
7	Weftâ€Knitted Fabric for a Highly Stretchable and Lowâ€Voltage Wearable Heater. Advanced Electronic Materials, 2017, 3, 1700193.	5.1	133
8	Intrinsically Stretchable and Conductive Textile by a Scalable Process for Elastic Wearable Electronics. ACS Applied Materials & Interfaces, 2017, 9, 13331-13338.	8.0	111
9	Biomassâ€Derived Carbon Materials: Controllable Preparation and Versatile Applications. Small, 2021, 17, e2008079.	10.0	105
10	Splash-Resistant and Light-Weight Silk-Sheathed Wires for Textile Electronics. Nano Letters, 2018, 18, 7085-7091.	9.1	98
11	Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Research, 2018, 11, 2347-2356.	10.4	70
12	Electricity-Triggered Self-Healing of Conductive and Thermostable Vitrimer Enabled by Paving Aligned Carbon Nanotubes. ACS Applied Materials & Interfaces, 2020, 12, 14315-14322.	8.0	60
13	Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14667-14675.	7.1	48
14	Carbonized Chinese Art Paper-Based High-Performance Wearable Strain Sensor for Human Activity Monitoring. ACS Applied Electronic Materials, 2019, 1, 2415-2421.	4.3	38
15	Sweat-Driven Silk-yarn Switches Enabled by Highly Aligned Gaps for Air-conditioning Textiles. Advanced Fiber Materials, 2019, 1, 197-204.	16.1	33
16	One-pot synthesis of CuInS ₂ nanocrystals using different anions to engineer their morphology and crystal phase. Dalton Transactions, 2015, 44, 9251-9259.	3.3	32
17	One-pot controllable synthesis of wurtzite CuInS2 nanoplates. Applied Surface Science, 2014, 307, 489-494.	6.1	24
18	Mineralâ€Templated 3D Graphene Architectures for Energyâ€Efficient Electrodes. Small, 2018, 14, e1801009.	10.0	21

Zhe Yin

#	Article	IF	CITATIONS
19	Biomimetic Mechanically Enhanced Carbon Nanotube Fibers by Silk Fibroin Infiltration. Small, 2021, 17, e2100066.	10.0	21
20	Sustainable Silkâ€Derived Multimode Carbon Dots. Small, 2021, 17, e2103623.	10.0	21
21	Silkworm Silk Fibers with Multiple Reinforced Properties Obtained through Feeding Ag Nanowires. Advanced Fiber Materials, 2022, 4, 547-555.	16.1	15
22	Unraveling the Phase Transition and Luminescence Tuning of Pb-Free Cs–Cu–I Perovskites Enabled by Reaction Temperature and Polar Solvent. Journal of Physical Chemistry Letters, 2022, 13, 4856-4863.	4.6	12
23	Carbothermal shock enabled facile and fast growth of carbon nanotubes in a second. Nano Research, 2022, 15, 2576-2581.	10.4	11
24	Seamless Graphene-Seal-Wrap as a Removable Protective Cover for Two-Dimensional Materials. , 2020, 2, 215-219.		6
25	A review of the functions of G protein-coupled estrogen receptor 1 in vascular and neurological aging. European Journal of Pharmacology, 2021, 908, 174363.	3.5	6
26	Construction of Robust Cadmium-Free Cu–In–Zn–S Nanocrystals and Polyfluorene Derivatives Hybrid Emissive Layer for Stable Electroluminescent White Light-Emitting Devices. Journal of Physical Chemistry Letters, 2021, 12, 7113-7119.	4.6	5
27	Mechanically Reinforced Silkworm Silk Fiber by Hot Stretching. Research, 2022, 2022, 9854063.	5.7	5
28	Research on combined framework and measurement design of parallel kinematic machines (PKM) digital prototyping. , 0, , .		0
29	Wearable Electronics: Weftâ€Knitted Fabric for a Highly Stretchable and Lowâ€Voltage Wearable Heater (Adv. Electron. Mater. 9/2017). Advanced Electronic Materials, 2017, 3, .	5.1	Ο