Yanfeng Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1219730/publications.pdf

Version: 2024-02-01

76294 102432 4,695 85 40 66 citations h-index g-index papers 85 85 85 3916 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sensors and Actuators B: Chemical, 2018, 256, 861-869.	4.0	211
2	NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3. Sensors and Actuators B: Chemical, 2017, 238, 473-481.	4.0	181
3	Porous SnO2 hierarchical nanosheets: hydrothermal preparation, growth mechanism, and gas sensing properties. CrystEngComm, 2011, 13, 3718.	1.3	174
4	Enhancement of NO2 gas sensing response based on ordered mesoporous Fe-doped In2O3. Sensors and Actuators B: Chemical, 2014, 191, 806-812.	4.0	141
5	Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor. Sensors and Actuators B: Chemical, 2012, 173, 52-57.	4.0	130
6	Hierarchical \hat{l}_{\pm} -Fe2O3/SnO2 semiconductor composites: Hydrothermal synthesis and gas sensing properties. Sensors and Actuators B: Chemical, 2013, 182, 336-343.	4.0	130
7	Reduced graphene oxide/l±-Fe2O3 composite nanofibers for application in gas sensors. Sensors and Actuators B: Chemical, 2017, 244, 233-242.	4.0	124
8	High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers. Sensors and Actuators B: Chemical, 2020, 320, 128292.	4.0	124
9	Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties. Sensors and Actuators B: Chemical, 2016, 236, 425-432.	4.0	120
10	Hierarchical flower-like WO3 nanostructures and their gas sensing properties. Sensors and Actuators B: Chemical, 2014, 204, 224-230.	4.0	111
11	Sn doping effect on NiO hollow nanofibers based gas sensors about the humidity dependence for triethylamine detection. Sensors and Actuators B: Chemical, 2021, 340, 129971.	4.0	108
12	Nanosheets assembled hierarchical flower-like WO3 nanostructures: Synthesis, characterization, and their gas sensing properties. Sensors and Actuators B: Chemical, 2015, 210, 75-81.	4.0	106
13	Facile synthesis and gas sensing properties of In2O3–WO3 heterojunction nanofibers. Sensors and Actuators B: Chemical, 2015, 209, 622-629.	4.0	102
14	Improvement of NO2 gas sensing performance based on discoid tin oxide modified by reduced graphene oxide. Sensors and Actuators B: Chemical, 2016, 227, 419-426.	4.0	102
15	Enhanced sensitive and selective xylene sensors using W-doped NiO nanotubes. Sensors and Actuators B: Chemical, 2015, 221, 1475-1482.	4.0	101
16	Acetone sensors with high stability to humidity changes based on Ru-doped NiO flower-like microspheres. Sensors and Actuators B: Chemical, 2020, 313, 127965.	4.0	94
17	Synthesis and gas sensing properties of hierarchical SnO2 nanostructures. Sensors and Actuators B: Chemical, 2013, 187, 301-307.	4.0	92
18	Au-loaded mesoporous WO3: Preparation and n-butanol sensing performances. Sensors and Actuators B: Chemical, 2016, 236, 67-76.	4.0	92

#	Article	IF	CITATIONS
19	Ultra-sensitive sensing platform based on Pt-ZnO-ln2O3 nanofibers for detection of acetone. Sensors and Actuators B: Chemical, 2018, 272, 185-194.	4.0	90
20	Dispersive SnO2 nanosheets: Hydrothermal synthesis and gas-sensing properties. Sensors and Actuators B: Chemical, 2011, 156, 779-783.	4.0	85
21	Preparation and gas sensing properties of hierarchical flower-like In2O3 microspheres. Sensors and Actuators B: Chemical, 2013, 176, 405-412.	4.0	84
22	One-pot synthesis of In doped NiO nanofibers and their gas sensing properties. Sensors and Actuators B: Chemical, 2017, 253, 584-591.	4.0	79
23	Horseshoe-shaped SnO2 with annulus-like mesoporous for ethanol gas sensing application. Sensors and Actuators B: Chemical, 2017, 240, 1321-1329.	4.0	76
24	Synthesis and gas sensing properties of bundle-like \hat{l}_{\pm} -Fe2O3 nanorods. Sensors and Actuators B: Chemical, 2011, 156, 368-374.	4.0	70
25	Preparation of Pd/PdO loaded WO3 microspheres for H2S detection. Sensors and Actuators B: Chemical, 2020, 321, 128629.	4.0	67
26	Novel Zn-doped SnO ₂ hierarchical architectures: synthesis, characterization, and gas sensing properties. CrystEngComm, 2012, 14, 1701-1708.	1.3	65
27	Enhanced NO2 gas sensing properties by Ag-doped hollow urchin-like In2O3 hierarchical nanostructures. Sensors and Actuators B: Chemical, 2017, 252, 418-427.	4.0	65
28	Detection of triethylamine with fast response by Al2O3/ \hat{l} ±-Fe2O3 composite nanofibers. Sensors and Actuators B: Chemical, 2018, 266, 139-148.	4.0	62
29	Porous hierarchical In2O3 nanostructures: Hydrothermal preparation and gas sensing properties. Sensors and Actuators B: Chemical, 2012, 171-172, 1066-1072.	4.0	61
30	Template-free synthesis and gas sensing properties of hierarchical hollow ZnO microspheres. CrystEngComm, 2013, 15, 7438.	1.3	59
31	Facile synthesis and gas sensing properties of La2O3–WO3 nanofibers. Sensors and Actuators B: Chemical, 2015, 221, 434-442.	4.0	59
32	Dispersed WO3 nanoparticles with porous nanostructure for ultrafast toluene sensing. Sensors and Actuators B: Chemical, 2019, 289, 195-206.	4.0	59
33	Template-free synthesis of cubic-rhombohedral-In2O3 flower for ppb level acetone detection. Sensors and Actuators B: Chemical, 2019, 290, 459-466.	4.0	54
34	Synthesis of novel SnO2/ZnSnO3 core–shell microspheres and their gas sensing properities. Sensors and Actuators B: Chemical, 2011, 155, 606-611.	4.0	51
35	Enhanced hydrogen sulfide sensing properties of Pt-functionalized α-Fe2O3 nanowires prepared by one-step electrospinning. Sensors and Actuators B: Chemical, 2018, 255, 1015-1023.	4.0	50
36	In2O3 nanoplates: preparation, characterization and gas sensing properties. RSC Advances, 2014, 4, 4831.	1.7	48

#	Article	IF	Citations
37	A pulse-driven sensor based on ordered mesoporous Ag2O/SnO2 with improved H2S-sensing performance. Sensors and Actuators B: Chemical, 2016, 228, 529-538.	4.0	48
38	Vitamin C-assisted synthesis and gas sensing properties of coaxial In2O3 nanorod bundles. Sensors and Actuators B: Chemical, 2015, 220, 68-74.	4.0	44
39	Hierarchical mesoporous zinc oxide microspheres for ethanol gas sensor. Sensors and Actuators B: Chemical, 2022, 357, 131333.	4.0	44
40	One-step synthesis and gas sensing characteristics of hierarchical SnO2 nanorods modified by Pd loading. Sensors and Actuators B: Chemical, 2011, 160, 244-250.	4.0	43
41	Preparation and gas sensing properties of hierarchical leaf-like SnO2 materials. Sensors and Actuators B: Chemical, 2018, 255, 2944-2951.	4.0	43
42	Metal–organic frameworks derived tin-doped cobalt oxide yolk-shell nanostructures and their gas sensing properties. Journal of Colloid and Interface Science, 2018, 528, 53-62.	5.0	42
43	Detection of Methanol with Fast Response by Monodispersed Indium Tungsten Oxide Ellipsoidal Nanospheres. ACS Sensors, 2017, 2, 648-654.	4.0	40
44	Electrospinning Derived NiO/NiFe ₂ O ₄ Fiber-in-Tube Composite for Fast Triethylamine Detection under Different Humidity. ACS Sensors, 2022, 7, 995-1007.	4.0	40
45	Al-doped ZnO thin films deposited by reactive frequency magnetron sputtering: H2-induced property changes. Thin Solid Films, 2007, 515, 3057-3060.	0.8	39
46	Template-free synthesis of novel In2O3 nanostructures and their application to gas sensors. Sensors and Actuators B: Chemical, 2013, 185, 32-38.	4.0	39
47	High specific surface area urchin-like hierarchical ZnO-TiO 2 architectures: Hydrothermal synthesis and photocatalytic properties. Materials Letters, 2016, 175, 52-55.	1.3	39
48	Gas sensing with hollow \hat{l}_{\pm} -Fe2O3 urchin-like spheres prepared via template-free hydrothermal synthesis. CrystEngComm, 2012, 14, 8335.	1.3	38
49	Highly sensitive mixed-potential-type NO2 sensor using porous double-layer YSZ substrate. Sensors and Actuators B: Chemical, 2013, 183, 474-477.	4.0	38
50	Mixed-potential type NO sensor using stabilized zirconia and MoO3–In2O3 nanocomposites. Ceramics International, 2016, 42, 12503-12507.	2.3	37
51	Hierarchical nanorod-flowers indium oxide microspheres and their gas sensing properties. Sensors and Actuators B: Chemical, 2016, 227, 547-553.	4.0	36
52	Novel cage-like î±-Fe ₂ O ₃ /SnO ₂ composite nanofibers by electrospinning for rapid gas sensing properties. RSC Advances, 2014, 4, 27552-27555.	1.7	35
53	High performance three-phase boundary obtained by sand blasting technology for mixed-potential-type zirconia-based NO2 sensors. Sensors and Actuators B: Chemical, 2015, 210, 91-95.	4.0	35
54	Highly sensitive amperometric Nafion-based CO sensor using Pt/C electrodes with different kinds of carbon materials. Sensors and Actuators B: Chemical, 2017, 239, 696-703.	4.0	33

#	Article	IF	CITATIONS
55	A 2.0 V capacitive device derived from shape-preserved metal nitride nanorods. Nano Energy, 2016, 26, 1-6.	8.2	31
56	Template-free synthesis of monodisperse \hat{l} ±-Fe2O3 porous ellipsoids and their application to gas sensors. CrystEngComm, 2012, 14, 2229.	1.3	30
57	Enhanced sensing properties of SnO2 nanofibers with a novel structure by carbonization. Sensors and Actuators B: Chemical, 2018, 271, 44-53.	4.0	30
58	Facile synthesis and gas-sensing properties of monodisperse α-Fe2O3 discoid crystals. RSC Advances, 2012, 2, 9824.	1.7	29
59	One-pot synthesis of hierarchical WO3 hollow nanospheres and their gas sensing properties. RSC Advances, 2015, 5, 29698-29703.	1.7	26
60	Low operating temperature toluene sensor based on novel α-Fe ₂ O ₃ /SnO ₂ heterostructure nanowire arrays. RSC Advances, 2016, 6, 52604-52610.	1.7	25
61	Conductometric ppb-level triethylamine sensor based on macroporous WO3-W18O49 heterostructures functionalized with carbon layers and PdO nanoparticles. Sensors and Actuators B: Chemical, 2022, 361, 131707.	4.0	25
62	Solid-electrolyte NASICON thick film CO2 sensor prepared on small-volume ceramic tube substrate. Materials Chemistry and Physics, 2005, 91, 338-342.	2.0	24
63	Controlled synthesis of hierarchical Sn-doped \hat{l}_{\pm} -Fe2O3 with novel sheaf-like architectures and their gas sensing properties. RSC Advances, 2013, 3, 7112.	1.7	23
64	Enhanced nitrogen oxide sensing performance based on tin-doped tungsten oxide nanoplates by a hydrothermal method. Journal of Colloid and Interface Science, 2018, 512, 740-749.	5.0	23
65	Mixed-potential-type YSZ-based sensor with nano-structured NiO and porous TPB processed with pore-formers using coating technique. Sensors and Actuators B: Chemical, 2015, 221, 1321-1329.	4.0	22
66	Synthesis, characterization and gas sensing properties of porous flower-like indium oxide nanostructures. RSC Advances, 2015, 5, 30297-30302.	1.7	21
67	Carbon modification endows WO3 with anti-humidity property and long-term stability for ultrafast H2S detection. Sensors and Actuators B: Chemical, 2022, 350, 130884.	4.0	21
68	High-efficiency dye-sensitized solar cells with hierarchical structures titanium dioxide to transfer photogenerated charge. Electrochimica Acta, 2015, 170, 276-283.	2.6	20
69	Facile synthesis benzene sensor based on V ₂ O ₅ -doped SnO ₂ nanofibers. RSC Advances, 2014, 4, 47549-47555.	1.7	19
70	Three-dimensional flake-flower Co/Sn oxide composite and its excellent ethanol sensing properties. Sensors and Actuators B: Chemical, 2016, 230, 17-24.	4.0	19
71	Investigation of doping effects of different noble metals for ethanol gas sensors based on mesoporous In ₂ O ₃ . Nanotechnology, 2021, 32, 305503.	1.3	19
72	MOF-derived porous NiO/NiFe2O4 nanocubes for improving the acetone detection. Sensors and Actuators B: Chemical, 2022, 366, 131985.	4.0	18

#	Article	IF	CITATIONS
73	Flower-like hierarchical zinc oxide architectures: Synthesis and gas sensing properties. Materials Letters, 2012, 69, 45-47.	1.3	17
74	Detection of nitrogen dioxide down to ppb levels using flower-like tungsten oxide nanostructures under different annealing temperatures. Journal of Colloid and Interface Science, 2016, 483, 314-320.	5.0	17
75	One-dimensional Cr-doped NiO nanostructures serving as a highly sensitive gas sensor for trace xylene detection. RSC Advances, 2017, 7, 41105-41110.	1.7	17
76	One-pot synthesis of cuboid WO3 crystal and its gas sensing properties. RSC Advances, 2014, 4, 18365-18369.	1.7	15
77	The enhanced CO gas sensing performance of Pd/SnO ₂ hollow sphere sensors under hydrothermal conditions. RSC Advances, 2016, 6, 80455-80461.	1.7	15
78	Synthesis and NO ₂ gas-sensing properties of coral-like indium oxide via a facile solvothermal method. RSC Advances, 2017, 7, 49273-49278.	1.7	13
79	3D TiO ₂ /ZnO composite nanospheres as an excellent electron transport anode for efficient dye-sensitized solar cells. RSC Advances, 2016, 6, 51320-51326.	1.7	11
80	Fast detection of alcohols by novel sea cucumber-like indium tungsten oxide. Sensors and Actuators B: Chemical, 2020, 319, 128158.	4.0	9
81	One-Pot Synthesis and Gas Sensitivities of SnO ₂ Hollow Microspheres. Sensor Letters, 2011, 9, 856-860.	0.4	6
82	A high sensitivity and selectivity n-butanol sensor based on monodispersed Pd-doped SnO ₂ nanoparticles mediated by glucose carbonization. Semiconductor Science and Technology, 2020, 35, 095030.	1.0	5
83	Hierarchical TiO2 flower-spheres with large surface area and high scattering ability: an excellent candidate for high efficiency dye sensitized solar cells. Chemical Research in Chinese Universities, 2015, 31, 841-845.	1.3	4
84	Ant colony optimization image registration algorithm based on wavelet transform and mutual information. , 2013, , .		1
85	Highly Sensitive Methane Sensors Based on Pd/HMS and Pd/SBA-15 Composite Prepared by Homogeneous Deposition-Precipitation Method. Sensor Letters, 2011, 9, 820-823.	0.4	O