
## Stanley H Duke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12196881/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Comparison of Wort Osmolyte Concentration and Malt Extract to Wort Sugars from Malting Barley<br>Breeding Lines. Journal of the American Society of Brewing Chemists, 2022, 80, 43-52.                                                                              | 0.8 | 0         |
| 2  | Description and functional analysis of the transcriptome from malting barley. Genomics, 2021, 113, 3310-3324.                                                                                                                                                       | 1.3 | 7         |
| 3  | <i>De novo</i> Expression of β-amylase2 ( <i>Bmy2</i> ) in Barley Grains During Micromalting. Journal of the American Society of Brewing Chemists, 2020, 78, 126-135.                                                                                               | 0.8 | 6         |
| 4  | Maltose Effects on Barley Malt β-Amylase Activity and Thermostability at Low Isothermal Mashing<br>Temperatures. Journal of the American Society of Brewing Chemists, 2020, 78, 207-218.                                                                            | 0.8 | 5         |
| 5  | Comparisons of Modern United States and Canadian Malting Barley Cultivars with Those from<br>Pre-Prohibition: V. Bmy1 Intron III Alleles and Grain β-Amylase Activity and Thermostability. Journal of<br>the American Society of Brewing Chemists, 2019, 77, 62-68. | 0.8 | 2         |
| 6  | Comparative gene expression analysis of the β-amylase and hordein gene families in the developing barley grain. Gene, 2019, 693, 127-136.                                                                                                                           | 1.0 | 17        |
| 7  | Comparisons of Modern U. S. and Canadian Malting Barley Cultivars with Those from Pre-Prohibition:<br>III. Wort Sugar Production during Mashing. Journal of the American Society of Brewing Chemists,<br>2018, 76, 96-111.                                          | 0.8 | 6         |
| 8  | Comparisons of Modern United States and Canadian Malting Barley Cultivars with Those from<br>Pre-Prohibition: IV. Malting Quality Assessments Using Standard and Nonstandard Measures. Journal<br>of the American Society of Brewing Chemists, 2018, 76, 156-168.   | 0.8 | 2         |
| 9  | Comparisons of Modern U.S. and Canadian Malting Barley Cultivars with Those from Pre-Prohibition:<br>II. Amylolytic Enzyme Activities and Thermostabilities. Journal of the American Society of Brewing<br>Chemists, 2018, 76, 38-49.                               | 0.8 | 9         |
| 10 | Comparisons of Modern U.S. and Canadian Malting Barley Cultivars with Those from Pre-Prohibition:<br>Malt Extract and Osmolyte Concentration. Journal of the American Society of Brewing Chemists, 2017,<br>75, 85-92.                                              | 0.8 | 6         |
| 11 | Maltose Effects on Barley Malt Diastatic Power Enzyme Activity and Thermostability at High<br>Isothermal Mashing Temperatures: II. α-Amylase. Journal of the American Society of Brewing Chemists,<br>2016, 74, 113-126.                                            | 0.8 | 9         |
| 12 | Maltose Effects on Barley Malt Diastatic Power Enzyme Activity and Thermostability at High<br>Isothermal Mashing Temperatures: I. β-Amylase. Journal of the American Society of Brewing Chemists,<br>2016, 74, 100-112.                                             | 0.8 | 14        |
| 13 | Cold and Heat Tolerance. Agronomy, 2015, , 259-302.                                                                                                                                                                                                                 | 0.2 | 31        |
| 14 | Comparison of Factors Involved in Starch Degradation in Barley Germination under Laboratory and Malting Conditions,. Journal of the American Society of Brewing Chemists, 2015, 73, 195-205.                                                                        | 0.8 | 23        |
| 15 | Roles and Requirements of Sulfur in Plant Nutrition. Agronomy, 2015, , 123-168.                                                                                                                                                                                     | 0.2 | 18        |
| 16 | Role of Potassium in Legume Dinitrogen Fixation. Assa, Cssa and Sssa, 2015, , 443-465.                                                                                                                                                                              | 0.6 | 7         |
| 17 | Comparisons of Barley Malt Amylolytic Enzyme Thermostabilities to Wort Osmolyte Concentrations,<br>Malt Extract, ASBC Measures of Malt Quality, and Initial Enzyme Activities. Journal of the American<br>Society of Brewing Chemists, 2014, 72, 271-284.           | 0.8 | 6         |
| 18 | Metabolic Changes in Avena sativa Crowns Recovering from Freezing. PLoS ONE, 2014, 9, e93085.                                                                                                                                                                       | 1.1 | 8         |

| #  | Article                                                                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Comparisons of Amylolytic Enzyme Activities and β-Amylases with DifferingBmy1Intron III Alleles to<br>Osmolyte Concentration and Malt Extract during Congress Mashing with North American Barley<br>Cultivars. Journal of the American Society of Brewing Chemists, 2013, 71, 193-207.                                                              | 0.8 | 8         |
| 20 | Histological Analysis and 3D Reconstruction of Winter Cereal Crowns Recovering from Freezing: A<br>Unique Response in Oat (Avena sativa L.). PLoS ONE, 2013, 8, e53468.                                                                                                                                                                             | 1.1 | 22        |
| 21 | Comparisons of Amylolytic Enzyme Activities and β-Amylases with DifferingBmy1Intron III Alleles to<br>Sugar Production during Congress Mashing with North American Barley Cultivars. Journal of the<br>American Society of Brewing Chemists, 2012, 70, 230-248.                                                                                     | 0.8 | 17        |
| 22 | Tracking Amylolytic Enzyme Activities during Congress Mashing with North American Barley<br>Cultivars: Comparisons of Patterns of Activity and I <sup>2</sup> -Amylases with Differing <i>Bmy1</i> Intron III<br>Alleles and Correlations of Amylolytic Enzyme Activities. Journal of the American Society of Brewing<br>Chemists, 2012, 70, 10-28. | 0.8 | 17        |
| 23 | Tracking the Progress of Congress Mashing with Osmolyte Concentration and Malt Extract Value in<br>North American Barley Cultivars and Relationships between Wort Osmolyte Concentration, Malt<br>Extract Value, and ASBC Measures of Malt Quality. Journal of the American Society of Brewing<br>Chemists. 2011. 69. 28-38.                        | 0.8 | 9         |
| 24 | Tracking the Progress of Wort Sugar Production during Congress Mashing with North American<br>Barley Cultivars and Comparisons to Wort Osmolyte Concentrations and Malt Extract. Journal of the<br>American Society of Brewing Chemists, 2011, 69, 200-213.                                                                                         | 0.8 | 22        |
| 25 | Differential expression of two β-amylase genes (Bmy1 and Bmy2) in developing and mature barley grain.<br>Planta, 2011, 233, 1001-1010.                                                                                                                                                                                                              | 1.6 | 33        |
| 26 | Differential RNA expression of Bmy1 during barley seed development and the association with β-amylase accumulation, activity, and total protein. Plant Physiology and Biochemistry, 2011, 49, 39-45.                                                                                                                                                | 2.8 | 23        |
| 27 | Utilization of Different Bmy1 Intron III Alleles for Predicting β-Amylase Activity and Thermostability in<br>Wild and Cultivated Barley. Plant Molecular Biology Reporter, 2010, 28, 491-501.                                                                                                                                                       | 1.0 | 18        |
| 28 | A Comparison of Barley Malt Osmolyte Concentrations and Standard Malt Quality Measurements as<br>Indicators of Barley Malt Amylolytic Enzyme Activities. Journal of the American Society of Brewing<br>Chemists, 2009, 67, 206-216.                                                                                                                 | 0.8 | 25        |
| 29 | A Comparison of Barley Malt Amylolytic Enzyme Activities as Indicators of Malt Sugar Concentrations.<br>Journal of the American Society of Brewing Chemists, 2009, 67, 99-111.                                                                                                                                                                      | 0.8 | 36        |
| 30 | A Comparison of Barley Malt Quality Measurements and Malt Sugar Concentrations. Journal of the American Society of Brewing Chemists, 2008, 66, 151-161.                                                                                                                                                                                             | 0.8 | 40        |
| 31 | A Comparison of Standard and Nonstandard Measures of Malt Quality. Journal of the American<br>Society of Brewing Chemists, 2008, 66, 11-19.                                                                                                                                                                                                         | 0.8 | 45        |
| 32 | Barley Seed Osmolyte Concentration as an Indicator of Preharvest Sprouting. Journal of the American<br>Society of Brewing Chemists, 2007, 65, 125-128.                                                                                                                                                                                              | 0.8 | 14        |
| 33 | Green Malt Osmolyte Concentration as an Early Indicator of Finished Malt Quality. Journal of the<br>American Society of Brewing Chemists, 2007, 65, 145-150.                                                                                                                                                                                        | 0.8 | 19        |
| 34 | Osmolyte Concentration as an Indicator of Malt Quality. Journal of the American Society of Brewing Chemists, 2007, 65, 59-62.                                                                                                                                                                                                                       | 0.8 | 29        |
| 35 | Mapping Genetic Factors Associated with Winter Hardiness, Fall Growth, and Freezing Injury in Autotetraploid Alfalfa. Crop Science, 2000, 40, 1387-1396.                                                                                                                                                                                            | 0.8 | 86        |
| 36 | Characteristics of Carbohydrate Metabolism in Sweet Corn (sugary-1) Endosperms. Journal of the<br>American Society for Horticultural Science, 1993, 118, 661-666.                                                                                                                                                                                   | 0.5 | 31        |

| #  | Article                                                                                                                                                                                    | IF       | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 37 | Leakage of Intracellular Substances as an Indicator of Freezing Injury in Alfalfa. Crop Science, 1991, 31,<br>430-435.                                                                     | 0.8      | 18           |
| 38 | Chloroplastic Regulation of Apoplastic α-Amylase Activity in Pea Seedlings. Plant Physiology, 1990, 93,<br>131-140.                                                                        | 2.3      | 15           |
| 39 | Amylases in Pea Tissues with Reduced Chloroplast Density and/or Function. Plant Physiology, 1990, 94, 1813-1819.                                                                           | 2.3      | 22           |
| 40 | Purification and Characterization of Pea Epicotyl $\hat{I}^2$ -Amylase. Plant Physiology, 1990, 92, 615-621.                                                                               | 2.3      | 73           |
| 41 | Characterization of α-Amylase from Shoots and Cotyledons of Pea ( <i>Pisum sativum</i> L.) Seedlings.<br>Plant Physiology, 1990, 92, 1154-1163.                                            | 2.3      | 57           |
| 42 | Partial Characterization and Subcellular Localization of Three α-Glucosidase Isoforms in Pea ( <i>Pisum) Tj ETQq</i>                                                                       | 000,rgBT | /Oygrlock 10 |
| 43 | Characterization of Pea Chloroplast D-Enzyme (4-α-d-Glucanotransferase). Plant Physiology, 1989, 91,<br>136-143.                                                                           | 2.3      | 46           |
| 44 | Localization of α-Amylase in the Apoplast of Pea (Pisum sativum L.) Stems. Plant Physiology, 1988, 87,<br>799-802.                                                                         | 2.3      | 33           |
| 45 | Role of the testa epidermis in the leakage of intracellular substances from imbibing soybean seeds and its implications for seedling survival. Physiologia Plantarum, 1986, 68, 625-631.   | 2.6      | 26           |
| 46 | Characterization of NADP+-isocitrate dehydrogenase from the host plant cytosol of lucerne<br>(Medicago sativa) root nodules. Physiologia Plantarum, 1986, 67, 538-544.                     | 2.6      | 26           |
| 47 | Electrophoretic Transfer as a Technique for the Detection and Identification of Plant Amylolytic<br>Enzymes in Polyacrylamide Gels. Plant Physiology, 1984, 75, 278-280.                   | 2.3      | 61           |
| 48 | Light control of extractable nitrate reductase activity in higher plants. Physiologia Plantarum, 1984,<br>62, 485-493.                                                                     | 2.6      | 55           |
| 49 | Specific Determination of α-Amylase Activity in Crude Plant Extracts Containing β-Amylase. Plant<br>Physiology, 1983, 71, 229-234.                                                         | 2.3      | 100          |
| 50 | Differential Leakage of Intracellular Substances from Imbibing Soybean Seeds. Plant Physiology, 1983,<br>72, 919-924.                                                                      | 2.3      | 66           |
| 51 | Differential Light Induction of Nitrate Reductases in Greening and Photobleached Soybean Seedlings.<br>Plant Physiology, 1983, 73, 56-60.                                                  | 2.3      | 22           |
| 52 | Beta-Amylases from Alfalfa ( <i>Medicago sativa</i> L.) Roots. Plant Physiology, 1982, 69, 1096-1102.                                                                                      | 2.3      | 62           |
| 53 | Effects of norflurazon (San 9789) on light-increased extractable nitrate reductase activity in soybean<br>[Glycine max(L.) Merr.]seedlings. Plant, Cell and Environment, 1982, 5, 155-162. | 2.8      | 17           |
| 54 | Effects of sulphur nutrition on nitrogen and carbon metabolism in lucerne (Medicago sativa L.).<br>Physiologia Plantarum, 1982, 54, 343-350.                                               | 2.6      | 40           |

| #  | Article                                                                                                                                                                                                          | IF                | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 55 | Root Respiration, Nodulation, and Enzyme Activities in Alfalfa During Cold Acclimation 1. Crop Science, 1981, 21, 489-495.                                                                                       | 0.8               | 26           |
| 56 | Influence of Potassiumâ€Fertilization Rate and Form on Photosynthesis and N <sub>2</sub> Fixation of Alfalfa <sup>1</sup> . Crop Science, 1981, 21, 481-485.                                                     | 0.8               | 53           |
| 57 | Selection and characterization of ethionine-resistant alfalfa (Medicago sativa L.) cell lines.<br>Theoretical and Applied Genetics, 1981, 59, 89-94.                                                             | 1.8               | 47           |
| 58 | Role of the Testa in Preventing Cellular Rupture During Imbibition of Legume Seeds. Plant Physiology,<br>1981, 67, 449-456.                                                                                      | 2.3               | 108          |
| 59 | Effects of temperature on germination and mitochondrial dehydrogenases in two soybean (Glycine) Tj ETQq1 1 C                                                                                                     | ).784314 r<br>2.6 | gǥŢ /Overloc |
| 60 | Effects of Potassium Fertilization on Nitrogen Fixation and Nodule Enzymes of Nitrogen Metabolism<br>in Alfalfa <sup>1</sup> . Crop Science, 1980, 20, 213-219.                                                  | 0.8               | 45           |
| 61 | Low Root Temperature Effects on Soybean Nitrogen Metabolism and Photosynthesis. Plant Physiology, 1979, 63, 956-962.                                                                                             | 2.3               | 59           |
| 62 | Photosynthetic independence of initial light-caused increase in extractable nitrate reductase activity from maize seedlings. Plant and Cell Physiology, 1979, 20, 1371-1380.                                     | 1.5               | 11           |
| 63 | Oscillations in the Activities of Enzymes of Nitrate Reduction and Ammonia Assimilation in Glycine max and Zea mays. Physiologia Plantarum, 1978, 42, 269-276.                                                   | 2.6               | 60           |
| 64 | Low Temperature Effects on Soybean (Glycine max [L.] Merr. cv. Wells) Free Amino Acid Pools during<br>Germination. Plant Physiology, 1978, 62, 642-647.                                                          | 2.3               | 37           |
| 65 | In vitro nitrate reductase activity and in vivo phytochrome measurements of maize seedlings as affected by various light treatments1. Plant and Cell Physiology, 1978, 19, 481-489.                              | 1.5               | 29           |
| 66 | Low Temperature Effects on Soybean ( <i>Glycine max</i> [L.] Merr. cv. Wells) Mitochondrial<br>Respiration and Several Dehydrogenases during Imbibition and Germination. Plant Physiology, 1977, 60,<br>716-722. | 2.3               | 77           |
| 67 | Clutamate Dehydrogenase Activity in <i>Lemna perpusilla</i> 6746: The Effects of Sucrose, Clucose and Fructose Addition to Growth Media. Physiologia Plantarum, 1977, 39, 67-72.                                 | 2.6               | 10           |
| 68 | Glutamate Dehydrogenase Activity in Roots: Distribution in a Seedling and Storage Root, and the<br>Effects of Red and Far-red Illuminations. Physiologia Plantarum, 1975, 34, 8-13.                              | 2.6               | 24           |