Fernanda Fg Dias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1219641/publications.pdf

Version: 2024-02-01

32	798	17 h-index	28
papers	citations		g-index
33	33	33	1086
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A complete workflow for discovering small bioactive peptides in foods by LC-MS/MS: A case study on almonds. Food Chemistry, 2022, 369, 130834.	8.2	24
2	Solid-Phase Extraction Approaches for Improving Oligosaccharide and Small Peptide Identification with Liquid Chromatography-High-Resolution Mass Spectrometry: A Case Study on Proteolyzed Almond Extract. Foods, 2022, 11, 340.	4.3	6
3	Understanding the impact of enzyme-assisted aqueous extraction on the structural, physicochemical, and functional properties of protein extracts from full-fat almond flour. Food Hydrocolloids, 2022, 127, 107534.	10.7	17
4	Effects of enzymatic extraction on the simultaneous extraction of oil and protein from full-fat almond flour, insoluble microstructure, emulsion stability and functionality. Future Foods, 2022, 5, 100151.	5.4	4
5	Scaling up the Two-Stage Countercurrent Extraction of Oil and Protein from Green Coffee Beans: Impact of Proteolysis on Extractability, Protein Functionality, and Oil Recovery. Food and Bioprocess Technology, 2022, 15, 1794-1809.	4.7	2
6	Leveraging Bioprocessing Strategies to Achieve the Simultaneous Extraction of Full-Fat Chickpea Flour Macronutrients and Enhance Protein and Carbohydrate Functionality. Food and Bioprocess Technology, 2022, 15, 1760-1777.	4.7	7
7	Integrated microwave- and enzyme-assisted extraction of phenolic compounds from olive pomace. LWT - Food Science and Technology, 2021, 138, 110621.	5.2	40
8	Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oil From <i>Cymbopogon densiflorus</i> (Steud.) Stapf Flowers. Journal of Essential Oil-bearing Plants: JEOP, 2021, 24, 40-52.	1.9	7
9	Method optimization of oxylipin hydrolysis in nonprocessed bovine milk indicates that the majority of oxylipins are esterified. Journal of Food Science, 2021, 86, 1791-1801.	3.1	6
10	From solvent extraction to the concurrent extraction of lipids and proteins from green coffee: An eco-friendly approach to improve process feasibility. Food and Bioproducts Processing, 2021, 129, 144-156.	3.6	13
11	Effects of enzyme-assisted extraction on the profile and bioaccessibility of isoflavones from soybean flour. Food Research International, 2021, 147, 110474.	6.2	7
12	Effects of industrial heat treatments on bovine milk oxylipins and conventional markers of lipid oxidation. Prostaglandins Leukotrienes and Essential Fatty Acids, 2020, 152, 102040.	2.2	32
13	Characterization and Demulsification of the Oil-Rich Emulsion from the Aqueous Extraction Process of Almond Flour. Processes, 2020, 8, 1228.	2.8	9
14	Biological properties of almond proteins produced by aqueous and enzyme-assisted aqueous extraction processes from almond cake. Scientific Reports, 2020, 10, 10873.	3.3	26
15	Improvement of Aglycone Content in Soy Isoflavones Extract by Free and Immobilized î'-Glucosidase and their Effects in Lipid Accumulation. Applied Biochemistry and Biotechnology, 2020, 192, 734-750.	2.9	13
16	Effects of enzymatic extraction of oil and protein from almond cake on the physicochemical and functional properties of protein extracts. Food and Bioproducts Processing, 2020, 122, 280-290.	3.6	33
17	Scaling up the Bioconversion of Cheese Whey Permeate into Fungal Oil by <i>Mucor circinelloides</i> JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 703-716.	1.9	12
18	Aqueous and Enzymatic Extraction of Oil and Protein from Almond Cake: A Comparative Study. Processes, 2019, 7, 472.	2.8	35

#	Article	IF	Citations
19	l-Asparaginase from Aspergillus spp.: production based on kinetics, thermal stability and biochemical characterization. 3 Biotech, 2019, 9, 289.	2.2	9
20	Effects of Processing Conditions on the Simultaneous Extraction and Distribution of Oil and Protein from Almond Flour. Processes, 2019, 7, 844.	2.8	13
21	Brazilian <i>Capsicum</i> peppers: capsaicinoid content and antioxidant activity. Journal of the Science of Food and Agriculture, 2018, 98, 217-224.	3. 5	51
22	A multicomponent system based on a blend of agroindustrial wastes for the simultaneous production of industrially applicable enzymes by solid-state fermentation. Food Science and Technology, 2018, 38, 131-137.	1.7	18
23	Opportunities for green microextractions in comprehensive two-dimensional gas chromatography / mass spectrometry-based metabolomics – A review. Analytica Chimica Acta, 2018, 1040, 1-18.	5 . 4	37
24	Acrylamide mitigation in French fries using native l-asparaginase from Aspergillus oryzae CCT 3940. LWT - Food Science and Technology, 2017, 76, 222-229.	5.2	39
25	Sequential optimization strategy for maximum l -asparaginase production from Aspergillus oryzae CCT 3940. Biocatalysis and Agricultural Biotechnology, 2016, 6, 33-39.	3.1	24
26	Purification, characterization and antiproliferative activity of l-asparaginase from Aspergillus oryzae CCT 3940 with no glutaminase activity. Asian Pacific Journal of Tropical Biomedicine, 2016, 6, 785-794.	1.2	38
27	Invertase production by Aspergillus niger under solid state fermentation: Focus on physical–chemical parameters, synergistic and antagonistic effects using agro-industrial wastes. Biocatalysis and Agricultural Biotechnology, 2015, 4, 645-652.	3.1	23
28	Simplex centroid mixture design to improve l-asparaginase production in solid-state fermentation using agroindustrial wastes. Biocatalysis and Agricultural Biotechnology, 2015, 4, 528-534.	3.1	26
29	A versatile system based on substrate formulation using agroindustrial wastes for protease production by Aspergillus niger under solid state fermentation. Biocatalysis and Agricultural Biotechnology, 2015, 4, 678-684.	3.1	39
30	Occurrence of macrocyclic lactones in milk and yogurt from Brazilian market. Food Control, 2015, 48, 43-47.	5.5	29
31	Venturi Easy Ambient Sonic-Spray Ionization. Analytical Chemistry, 2011, 83, 1375-1380.	6.5	125
32	Screening of Supports for the Immobilization of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="bold">β</mml:mi></mml:math> -Glucosidase. Enzyme Research, 2011, 2011, 1-8.	1.8	34