Pavel Veverka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1219564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic properties, 57Fe Mössbauer spectroscopy and 1H NMR relaxometry of ε-Fe2â~xGaxO3 nanoparticles: The effect of gallium doping on magnetic and MRI performance. Journal of Alloys and Compounds, 2021, 856, 158187.	5.5	2
2	Temperature and field dependences of transverse relaxivity of Co–Zn ferrite nanoparticles coated with silica: The role of magnetic properties and different regimes. Materials Chemistry and Physics, 2021, 260, 124178.	4.0	3
3	The ε-AlxFe2-xO3 nanomagnets as MRI contrast agents: Factors influencing transverse relaxivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124423.	4.7	5
4	Poly(p-phenylenediamine)/maghemite composite as highly effective adsorbent for anionic dye removal. Reactive and Functional Polymers, 2020, 146, 104436.	4.1	14
5	Magnetic nanoparticles of Gaâ€substituted <scp>εâ€Fe₂O₃</scp> for biomedical applications: Magnetic properties, transverse relaxivity, and effects of silicaâ€coated particles on cytoskeletal networks. Journal of Biomedical Materials Research - Part A, 2020, 108, 1563-1578.	4.0	9
6	Microwave Investigation of Greigite Nanoparticles Magnetic Properties. , 2020, , .		0
7	Trapping and Recombination Centers in Cesium Hafnium Chloride Single Crystals: EPR and TSL Study. Journal of Physical Chemistry C, 2019, 123, 19402-19411.	3.1	19
8	Rod-like particles of silica-coated maghemite: Synthesis via akaganeite, characterization and biological properties. Journal of Magnetism and Magnetic Materials, 2019, 476, 149-156.	2.3	4
9	Mn-Zn ferrite nanoparticles coated with mesoporous silica as core material for heat-triggered release of therapeutic agents. Journal of Magnetism and Magnetic Materials, 2019, 475, 429-435.	2.3	19
10	High-field magnetoconductance in La-Sr manganites of FM and AFM ground states. Journal of Magnetism and Magnetic Materials, 2018, 456, 167-178.	2.3	4
11	Transverse Relaxivity of Nanoparticle Contrast Agents for MRI: Different Magnetic Cores and Coatings. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	9
12	Mn–Zn Ferrite Nanoparticles With Silica and Titania Coatings: Synthesis, Transverse Relaxivity, and Cytotoxicity. IEEE Transactions on Magnetics, 2017, 53, 1-8.	2.1	11
13	Magnetic properties of rare-earth-doped La0.7Sr0.3MnO3. Journal of Physics Condensed Matter, 2017, 29, 035803.	1.8	7
14	Using ferromagnetic nanoparticles with low Curie temperature for magnetic resonance imaging-guided thermoablation. International Journal of Nanomedicine, 2016, Volume 11, 3801-3811.	6.7	10
15	The effect of magnetic nanoparticles on neuronal differentiation of induced pluripotent stem cell-derived neural precursors. International Journal of Nanomedicine, 2016, Volume 11, 6267-6281.	6.7	16
16	Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	21
17	The impact of silica encapsulated cobalt zinc ferrite nanoparticles on DNA, lipids and proteins of rat bone marrow mesenchymal stem cells. Nanotoxicology, 2016, 10, 662-670.	3.0	15
18	Clusters of Magnetic Nanoparticles as Contrast Agents for MRI: Effect of Aggregation on Transverse Relaxivity. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	11

PAVEL VEVERKA

#	Article	IF	CITATIONS
19	Magnetic La1â^'x Sr x MnO3 nanoparticles as contrast agents for MRI: the parameters affecting 1H transverse relaxation. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	12
20	Nuclear Magnetic Resonance in Hexaferrite/Maghemite Composite Nanoparticles. Acta Physica Polonica A, 2015, 127, 514-516.	0.5	4
21	The magnetic and neutron diffraction studies of La1â^'Sr MnO3 nanoparticles prepared via molten salt synthesis. Journal of Solid State Chemistry, 2015, 221, 364-372.	2.9	25
22	Magnetic heating by silica-coated Co–Zn ferrite particles. Journal Physics D: Applied Physics, 2014, 47, 065503.	2.8	47
23	Influence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites. Journal of Solid State Chemistry, 2013, 204, 373-379.	2.9	44
24	Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on perovskite manganite nanoparticles. Journal of Materials Chemistry, 2011, 21, 157-164.	6.7	35
25	The magnetic and hyperthermia studies of bare and silica-coated La0.75Sr0.25MnO3 nanoparticles. Journal of Nanoparticle Research, 2011, 13, 1237-1252.	1.9	50
26	Silicaâ€coated La _{0.75} Sr _{0.25} MnO ₃ nanoparticles for magnetically driven DNA isolation. Journal of Separation Science, 2011, 34, 3077-3082.	2.5	16
27	Synthesis and magnetic properties of Co1â~'xZnxFe2O4+γ nanoparticles as materials for magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials, 2010, 322, 2386-2389.	2.3	47
28	Core–shell La _{1â^' <i>x</i>} Sr _{<i>x</i>} MnO ₃ nanoparticles as colloidal mediators for magnetic fluid hyperthermia. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4389-4405.	3.4	37
29	Manganese Perovskite Nanoparticles and the Downturn of Inverse Susceptibility above the Curie Temperature. Acta Physica Polonica A, 2010, 118, 792-793.	0.5	8
30	Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating. Nanotechnology, 2009, 20, 275610.	2.6	65
31	Search of new core materials for magnetic fluid hyperthermia: Preliminary chemical and physical issues. Progress in Solid State Chemistry, 2009, 37, 1-14.	7.2	84
32	Sr-hexaferrite/maghemite composite nanoparticles—possible new mediators for magnetic hyperthermia. Nanotechnology, 2008, 19, 215705.	2.6	24
33	Magnetic heating by cobalt ferrite nanoparticles. Nanotechnology, 2007, 18, 345704.	2.6	83
34	Strontium ferrite nanoparticles synthesized in presence of polyvinylalcohol: Phase composition, microstructural and magnetic properties. Journal of Magnetism and Magnetic Materials, 2007, 309, 106-112.	2.3	18
35	Magnetic nanoparticle design for medical applications. Progress in Solid State Chemistry, 2006, 34, 237-247.	7.2	465
36	A55Mn NMR study of the La0.75Sr0.25MnO3 nanoparticles. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 155-158.	0.8	16

PAVEL VEVERKA

#	Article	IF	CITATIONS
37	Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 2006, 302, 315-320.	2.3	155
38	Towards a versatile platform based on magnetic nanoparticles for in vivo applications. Bulletin of Materials Science, 2006, 29, 581-586.	1.7	40
39	Influence of hypercrosslinking on adsorption and absorption on or in styrenic polymers. Reactive and Functional Polymers, 2004, 59, 71-79.	4.1	37
40	Mechanism of hypercrosslinking of chloromethylated styrene–divinylbenzene copolymers. Reactive and Functional Polymers, 1999, 41, 21-25.	4.1	118
41	Surface Effect of Iron Oxide Nanoparticles on the Suppression of Oxidative Burst in Cells. Journal of Cluster Science, 0, , 1.	3.3	2