
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1219548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein transport across the lung epithelial barrier. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L247-L259.	2.9	214
2	Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 60, 227-240.	4.3	202
3	The Particle has Landed—Characterizing the Fate of Inhaled Pharmaceuticals. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2010, 23, S-71-S-87.	1.4	191
4	Monolayers of human alveolar epithelial cells in primary culture for pulmonary absorption and transport studies. Pharmaceutical Research, 1999, 16, 601-608.	3.5	151
5	Na transport proteins are expressed by rat alveolar epithelial type I cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L599-L608.	2.9	132
6	Mechanisms of Alveolar Epithelial Translocation of a Defined Population of Nanoparticles. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 604-614.	2.9	111
7	Age-dependent expression of P-glycoprotein gp170 in Caco-2 cell monolayers. Pharmaceutical Research, 1996, 13, 885-890.	3.5	103
8	Contribution of active Na+ and Clâ^' fluxes to net ion transport by alveolar epithelium. Respiration Physiology, 1991, 85, 245-256.	2.7	100
9	Size-Dependent Dextran Transport across Rat Alveolar Epithelial Cell Monolayers. Journal of Pharmaceutical Sciences, 1997, 86, 305-309.	3.3	100
10	Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomedicine: Nanotechnology, Biology, and Medicine, 2008, 4, 139-145.	3.3	94
11	Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Molecular Vision, 2003, 9, 559-68.	1.1	94
12	Active chloride transport in the pigmented rabbit conjunctiva. Current Eye Research, 1993, 12, 1041-1048.	1.5	90
13	Alveolar Epithelial Cell Injury Due to Zinc Oxide Nanoparticle Exposure. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1398-1409.	5.6	90
14	Nanoparticle effects on rat alveolar epithelial cell monolayer barrier properties. Toxicology in Vitro, 2007, 21, 1373-1381.	2.4	73
15	Characterization of mouse alveolar epithelial cell monolayers. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L1051-L1058.	2.9	70
16	Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L524-L536.	2.9	70
17	Knockout Mice Reveal Key Roles for Claudin 18 in Alveolar Barrier Properties and Fluid Homeostasis. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 210-222.	2.9	70
18	A primary culture model of rabbit conjunctival epithelial cells exhibiting tight barrier properties. Current Eye Research, 1996, 15, 1163-1169.	1.5	64

#	Article	IF	CITATIONS
19	Role of P-glycoprotein in restricting propranolol transport in cultured rabbit conjunctival epithelial cell layers. Pharmaceutical Research, 2000, 17, 533-538.	3.5	62
20	Net absorption of IgG via FcRn-mediated transcytosis across rat alveolar epithelial cell monolayers. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L616-L622.	2.9	60
21	Polystyrene nanoparticle trafficking across MDCK-II. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 588-594.	3.3	58
22	A useful in vitro model for transport studies of alveolar epithelial barrier. Pharmaceutical Research, 2001, 18, 253-255.	3.5	57
23	Polar solute transport across the pigmented rabbit conjunctiva: size dependence and the influence of 8-bromo cyclic adenosine monophosphate. Pharmaceutical Research, 1997, 14, 1246-1251.	3.5	51
24	Assessment of transport rates of proteins and peptides across primary human alveolar epithelial cell monolayers. European Journal of Pharmaceutical Sciences, 2006, 28, 196-203.	4.0	49
25	Dipeptide transport across rat alveolar epithelial cell monolayers. Pharmaceutical Research, 1993, 10, 1668-1674.	3.5	45
26	Meeting future challenges in topical ocular drug delivery:. Journal of Controlled Release, 2000, 65, 1-11.	9.9	42
27	In vitro and ex vivo models in inhalation biopharmaceutical research — advances, challenges and future perspectives. Advanced Drug Delivery Reviews, 2021, 177, 113862.	13.7	38
28	Rates of Protein Transport Across Rat Alveolar Epithelial Cell Monolayers. Journal of Drug Targeting, 1999, 7, 335-342.	4.4	37
29	Effects of KGF on Alveolar Epithelial Cell Transdifferentiation Are Mediated by JNK Signaling. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 239-246.	2.9	36
30	Pharmacological modulation of fluid secretion in the pigmented rabbit conjunctiva. Life Sciences, 2000, 66, PL105-PL111.	4.3	35
31	Contribution of Na+-glucose cotransport to the short-circuit current in the pigmented rabbit conjunctiva. Current Eye Research, 1996, 15, 447-451.	1.5	33
32	Na+-DependentL-Arginine Transport in the Pigmented Rabbit Conjunctiva. Experimental Eye Research, 1997, 65, 547-553.	2.6	33
33	Modulation of ion conductance and active transport by TGF-β1 in alveolar epithelial cell monolayers. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L1192-L1200.	2.9	32
34	Horseradish peroxidase transport across rat alveolar epithelial cell monolayers. Pharmaceutical Research, 1996, 13, 1331-1335.	3.5	31
35	Permeability characteristics of primary cultured rabbit conjunctival epithelial cells to low molecular weight drugs. Current Eye Research, 1996, 15, 1170-1174.	1.5	31
36	Absorption of intact albumin across rat alveolar epithelial cell monolayers. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L458-L465.	2.9	29

#	Article	IF	CITATIONS
37	KGF prevents hyperoxia-induced reduction of active ion transport in alveolar epithelial cells. American Journal of Physiology - Cell Physiology, 1999, 276, C1352-C1360.	4.6	28
38	Possible existence of Na+-coupled amino acid transport in the pigmented rabbit conjunctiva. Life Sciences, 1995, 57, 1427-1431.	4.3	27
39	Studies on the mechanisms of active ion fluxes across alveolar epithelial cell monolayers. Cytotechnology, 1992, 14, 187-193.	0.3	25
40	Effects of protease inhibitors on vasopressin transport across rat alveolar epithelial cell monolayers. Pharmaceutical Research, 1994, 11, 1617-1622.	3.5	25
41	Regulation ofl-Cystine Transport and Intracellular GSH Level by a Nitric Oxide Donor in Primary Cultured Rabbit Conjunctival Epithelial Cell Layers. , 2003, 44, 1202.		25
42	Transport of thyrotropin-releasing hormone across rat alveolar epithelial cell monolayers. Life Sciences, 1994, 54, 2083-2092.	4.3	24
43	Knockout Mice Reveal a Major Role for Alveolar Epithelial Type I Cells in Alveolar Fluid Clearance. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 395-406.	2.9	24
44	Organic cation transport in rabbit alveolar epithelial cell monolayers. Pharmaceutical Research, 1999, 16, 1280-1287.	3.5	22
45	Nanomaterial interactions with and trafficking across the lung alveolar epithelial barrier: implications for health effects of air-pollution particles. Air Quality, Atmosphere and Health, 2011, 4, 65-78.	3.3	22
46	Targeted drug delivery to the respiratory tract: solute permeability of air-interface cultured rabbit tracheal epithelial cell monolayers. Journal of Drug Targeting, 1996, 4, 79-86.	4.4	21
47	Modulation of Chloride Secretion Across the Pigmented Rabbit Conjunctiva. Experimental Eye Research, 1998, 66, 275-282.	2.6	21
48	Characterization of cyclic AMP-regulated chloride conductance in the pigmented rabbit conjunctival epithelial cells. Canadian Journal of Physiology and Pharmacology, 2002, 80, 533-540.	1.4	19
49	Polystyrene nanoparticle exposure induces ion-selective pores in lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2215-2222.	2.6	19
50	Evidence for Nanoparticle-Induced Lysosomal Dysfunction in Lung Adenocarcinoma (A549) Cells. International Journal of Molecular Sciences, 2019, 20, 5253.	4.1	19
51	Net glutathione secretion across primary cultured rabbit conjunctival epithelial cell layers. Investigative Ophthalmology and Visual Science, 2002, 43, 1154-61.	3.3	19
52	Glutathione and Its Transporters in Ocular Surface Defense. Ocular Surface, 2007, 5, 269-279.	4.4	18
53	Cyclic AMP Modulation of Active Ion Transport in the Pigmented Rabbit Conjunctiva. Journal of Ocular Pharmacology and Therapeutics, 1996, 12, 281-287.	1.4	17
54	Air-Interface Cultures of Guinea Pig Airway Epithelial Cells: Effects of Active Sodium and Chloride Transport Inhibitors on Bioelectric Properties. Experimental Lung Research, 1994, 20, 101-117.	1.2	14

#	Article	IF	CITATIONS
55	Functional characterization and cloning of amino acid transporter B0,+ (ATB0,+) in primary cultured rat pneumocytes. Journal of Cellular Physiology, 2008, 214, 645-654.	4.1	14
56	Alveolar epithelial cell processing of nanoparticles activates autophagy and lysosomal exocytosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L286-L300.	2.9	13
57	Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers. International Journal of Nanomedicine, 2011, 6, 2849.	6.7	12
58	Estimation of paracellular conductance of primary rat alveolar epithelial cell monolayers. Journal of Applied Physiology, 2005, 98, 138-143.	2.5	11
59	Measurement of solute fluxes in isolated rat lungs. Respiration Physiology, 1993, 91, 321-334.	2.7	10
60	The Conjunctival Barrier in Ocular Drug Delivery. , 2008, , 307-320.		10
61	Dipeptide uptake and transport characteristics in rabbit tracheal epithelial cell layers cultured at an air interface. Pharmaceutical Research, 1998, 15, 979-983.	3.5	9
62	Molecular and Functional Expression of Multidrug Resistance-Associated Protein-1 in Primary Cultured Rat Alveolar Epithelial Cells. Journal of Pharmaceutical Sciences, 2008, 97, 2340-2349.	3.3	9
63	Kinetic evidence for Na+-glucose co-transport in the pigmented rabbit conjunctiva. Current Eye Research, 1997, 16, 1050-1055.	1.5	8
64	Characterization of protein factor(s) in rat bronchoalveolar lavage fluid that enhance insulin transport via transcytosis across primary rat alveolar epithelial cell monolayers. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 808-816.	4.3	8
65	Arginine vasopressin transport and metabolism in the pigmented rabbit conjunctiva. European Journal of Pharmaceutical Sciences, 1998, 6, 47-52.	4.0	7
66	Enhancement of Insulin Transport Across Primary Rat Alveolar Epithelial Cell Monolayers by Endogenous Cellular Factor(s). Pharmaceutical Research, 2007, 24, 1713-1719.	3.5	5
67	Oligopeptide Transport in Rat Lung Alveolar Epithelial Cells is Mediated by Pept2. Pharmaceutical Research, 2017, 34, 2488-2497.	3.5	5
68	Specialized Protective Role of Mucosal Glutathione in Pigmented Rabbit Conjunctiva. , 2003, 44, 4427.		4
69	Biokinetic modeling of nanoparticle interactions with lung alveolar epithelial cells: uptake, intracellular processing, and egress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R36-R43.	1.8	4
70	Characteristics of Passive Solute Transport across Primary Rat Alveolar Epithelial Cell Monolayers. Membranes, 2021, 11, 331.	3.0	4
71	Role of sodium pump β1 subunit in adult mouse lung alveolar fluid homeostasis. FASEB Journal, 2012, 26, 1069.6.	0.5	1
72	Biokinetic Modeling of Nanoparticle Interactions with Lung Alveolar Epithelial Cells. FASEB Journal, 2021, 35, .	0.5	0

#	Article	IF	CITATIONS
73	Swellingâ€activated K efflux and regulatory volume decrease efficiency in human bronchial epithelial cells. FASEB Journal, 2006, 20, A835.	0.5	0
74	Heteropore Characteristics of Type l―and Type II‣ike Rat Alveolar Epithelial Cell Monolayers. FASEB Journal, 2010, 24, .	0.5	0
75	Effect of surfactants on polystyrene nanoparticle (PNP) interactions with primary rat alveolar epithelial cell monolayers (RAECM). FASEB Journal, 2013, 27, 722.5.	0.5	Ο
76	Nanodiamond (ND) interactions with primary rat alveolar epithelial cell monolayers (RAECM). FASEB Journal, 2013, 27, 722.6.	0.5	0
77	Cytosolic calcium regulates nanoparticle egress from alveolar epithelial cells (780.11). FASEB Journal, 2014, 28, 780.11.	0.5	0
78	Interactions of Inhaled Nanoparticles with Rat Alveolar Epithelial Cell Monolayers. FASEB Journal, 2018, 32, 745.3.	0.5	0