## Tomasz Biliński

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12194275/publications.pdf Version: 2024-02-01



TOMASZ RILLÅ SKL

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Senescence as a trade-off between successful land colonisation and longevity: critical review and analysis of a hypothesis. PeerJ, 2021, 9, e12286.                                                                       | 2.0 | 4         |
| 2  | The budding yeast Saccharomyces cerevisiae as a model organism: possible implications for gerontological studies. Biogerontology, 2017, 18, 631-640.                                                                      | 3.9 | 14        |
| 3  | Principles of alternative gerontology. Aging, 2016, 8, 589-602.                                                                                                                                                           | 3.1 | 6         |
| 4  | The longevity in the yeast Saccharomyces cerevisiae: A comparison of two approaches for assessment the lifespan. Biochemical and Biophysical Research Communications, 2015, 460, 651-656.                                 | 2.1 | 20        |
| 5  | Energy excess is the main cause of accelerated aging of mammals. Oncotarget, 2015, 6, 12909-12919.                                                                                                                        | 1.8 | 19        |
| 6  | The rules of aging: are they universal? Is the yeast model relevant for gerontology?. Acta Biochimica<br>Polonica, 2014, 61, 663-9.                                                                                       | 0.5 | 4         |
| 7  | Hypertrophy, replicative ageing and the ageing process. FEMS Yeast Research, 2012, 12, 739-740.                                                                                                                           | 2.3 | 12        |
| 8  | Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast.<br>FEMS Yeast Research, 2012, 12, 97-101.                                                                           | 2.3 | 37        |
| 9  | Oxidative stress during aging of the yeast in a stationary culture and its attenuation by antioxidants.<br>Cell Biology International, 2010, 34, 731-736.                                                                 | 3.0 | 17        |
| 10 | Cell volume as a factor limiting the replicative lifespan of the yeast Saccharomyces cerevisiae.<br>Biogerontology, 2009, 10, 481-488.                                                                                    | 3.9 | 53        |
| 11 | Is the Yeast a Relevant Model for Aging of Multicellular Organisms? An Insight from the Total Lifespan<br>of Saccharomyces cerevisiae. Current Aging Science, 2008, 1, 159-165.                                           | 1.2 | 25        |
| 12 | Does yeast shmooing mean a commitment to apoptosis?. Cell Biology International, 2006, 30, 205-209.                                                                                                                       | 3.0 | 7         |
| 13 | Relationship between the replicative age and cell volume in Saccharomyces cerevisiae Acta<br>Biochimica Polonica, 2006, 53, 747-751.                                                                                      | 0.5 | 24        |
| 14 | Hypothesis: cell volume limits cell divisions Acta Biochimica Polonica, 2006, 53, 833-835.                                                                                                                                | 0.5 | 21        |
| 15 | Hypothesis: cell volume limits cell divisions. Acta Biochimica Polonica, 2006, 53, 833-5.                                                                                                                                 | 0.5 | 14        |
| 16 | A novel test for identifying genes involved in aldehyde detoxification in the yeast. Increased<br>sensitivity of superoxideâ€deficient yeast to aldehydes and their metabolic precursors. BioFactors, 2005,<br>24, 59-65. | 5.4 | 9         |
| 17 | Ascorbate abolishes auxotrophy caused by the lack of superoxide dismutase in Saccharomyces cerevisiae. Journal of Biotechnology, 2005, 115, 271-278.                                                                      | 3.8 | 21        |
| 18 | Replicative aging of the yeast does not require DNA replication. Biochemical and Biophysical Research<br>Communications, 2005, 333, 138-141.                                                                              | 2.1 | 14        |

Tomasz Biliå",ski

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Antioxidants protect the yeastSaccharomyces cerevisiaeagainst hypertonic stress. Free Radical Research, 2005, 39, 365-371.                                                                                                               | 3.3 | 57        |
| 20 | Limited Effectiveness of Antioxidants in the Protection of Yeast Defective in Antioxidant Proteins.<br>Free Radical Research, 2004, 38, 1159-1165.                                                                                       | 3.3 | 19        |
| 21 | Ascorbate Restores Lifespan of Superoxide-dismutase Deficient Yeast. Free Radical Research, 2004, 38, 1019-1024.                                                                                                                         | 3.3 | 22        |
| 22 | Effect of superoxide dismutase deficiency on the life span of the yeast Saccharomyces cerevisiae. An<br>oxygen-independent role of Cu,Zn-superoxide dismutase. Biochimica Et Biophysica Acta - General<br>Subjects, 2002, 1570, 199-202. | 2.4 | 28        |
| 23 | Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free<br>Radical Biology and Medicine, 2000, 28, 659-664.                                                                                     | 2.9 | 164       |
| 24 | Oxygen toxicity and microbial evolution. BioSystems, 1991, 24, 305-312.                                                                                                                                                                  | 2.0 | 33        |
| 25 | Superoxide dismutase deficiency and the toxicity of the products of autooxidation of polyunsaturated fatty acids in yeast. Lipids and Lipid Metabolism, 1989, 1001, 102-106.                                                             | 2.6 | 43        |
| 26 | Is hydroxyl radical generated by the Fenton reaction in vivo?. Biochemical and Biophysical Research Communications, 1985, 130, 533-539.                                                                                                  | 2.1 | 161       |
| 27 | Regulation of Synthesis of Catalases and Iso-1-cytochrome c in Saccharomyces cerevisiae by Glucose,<br>Oxygen and Heme. FEBS Journal, 1982, 128, 179-184.                                                                                | 0.2 | 102       |
| 28 | Posttranscriptional heme control of catalase synthesis in the yeast Saccharomyces cerevisiae.<br>Current Genetics, 1981, 4, 19-23.                                                                                                       | 1.7 | 19        |
| 29 | Haemoprotein formation in yeast. Molecular Genetics and Genomics, 1978, 160, 51-57.                                                                                                                                                      | 2.4 | 23        |
| 30 | Demonstration of anaerobic catalase synthesis in the cz1 mutant of Saccharomyces cerevisiae.<br>Biochemical and Biophysical Research Communications, 1978, 83, 1225-1233.                                                                | 2.1 | 41        |
| 31 | Analysis of heme biosynthesis in catalase and cytochrome deficient yeast mutants. Molecular Genetics and Genomics, 1977, 156, 177-183.                                                                                                   | 2.4 | 15        |
| 32 | Haemoprotein formation in yeast. Molecular Genetics and Genomics, 1976, 145, 37-42.                                                                                                                                                      | 2.4 | 28        |
| 33 | Hemoproteid formation in yeast. Molecular Genetics and Genomics, 1974, 134, 299-305.                                                                                                                                                     | 2.4 | 12        |
| 34 | The dependence of cytosole protein biosynthesis resistance to cycloheximide in yeast on changes in mitochondrial activity. Molecular Genetics and Genomics, 1974, 129, 243-248.                                                          | 2.4 | 5         |
| 35 | On the specificity of caffeine effects. Molecular Genetics and Genomics, 1972, 118, 373-379.                                                                                                                                             | 2.4 | 28        |