Neil P Lareau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12193169/publications.pdf

Version: 2024-02-01

	933447	1125743
521	10	13
citations	h-index	g-index
13	13	688
docs citations	times ranked	citing authors
	citations 13	521 10 citations h-index 13 13

#	Article	IF	CITATIONS
1	Fire-Generated Tornadic Vortices. Bulletin of the American Meteorological Society, 2022, 103, E1296-E1320.	3.3	12
2	Confronting Uncertainties of Simulated Air Pollution Concentrations during Persistent Cold Air Pool Events in the Salt Lake Valley, Utah. Environmental Science & Technology, 2021, 55, 15072-15081.	10.0	6
3	Size dependence in chord characteristics from simulated and observed continental shallow cumulus. Atmospheric Chemistry and Physics, 2020, 20, 10211-10230.	4.9	4
4	Subcloud and Cloud-Base Latent Heat Fluxes during Shallow Cumulus Convection. Journals of the Atmospheric Sciences, 2019, 77, 1081-1100.	1.7	8
5	The FireFlux II experiment: a model-guided field experiment to improve understanding of fire–atmosphere interactions and fire spread. International Journal of Wildland Fire, 2019, 28, 308.	2.4	35
6	Observed Boundary Layer Controls on Shallow Cumulus at the ARM Southern Great Plains Site. Journals of the Atmospheric Sciences, 2018, 75, 2235-2255.	1.7	43
7	The Rapid Deployments to Wildfires Experiment (RaDFIRE): Observations from the Fire Zone. Bulletin of the American Meteorological Society, 2018, 99, 2539-2559.	3.3	25
8	The Mean and Turbulent Properties of a Wildfire Convective Plume. Journal of Applied Meteorology and Climatology, 2017, 56, 2289-2299.	1.5	47
9	Fire weather conditions and fire–atmosphere interactions observed during low-intensity prescribed fires – RxCADRE 2012. International Journal of Wildland Fire, 2016, 25, 90.	2.4	46
10	Environmental controls on pyrocumulus and pyrocumulonimbus initiation and development. Atmospheric Chemistry and Physics, 2016, 16, 4005-4022.	4.9	58
11	Dynamically Induced Displacements of a Persistent Cold-Air Pool. Boundary-Layer Meteorology, 2015, 154, 291-316.	2.3	42
12	Turbulent Erosion of Persistent Cold-Air Pools: Numerical Simulations*. Journals of the Atmospheric Sciences, 2015, 72, 1409-1427.	1.7	32
13	The Persistent Cold-Air Pool Study. Bulletin of the American Meteorological Society, 2013, 94, 51-63.	3.3	163