Clement Bommier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12192907/publications.pdf

Version: 2024-02-01

32 papers

6,024 citations

28 h-index 434195 31 g-index

34 all docs

34 docs citations

times ranked

34

6472 citing authors

#	Article	IF	CITATIONS
1	Na-Ion Battery Anodes: Materials and Electrochemistry. Accounts of Chemical Research, 2016, 49, 231-240.	15.6	886
2	Hard Carbon Microspheres: Potassiumâ€lon Anode Versus Sodiumâ€lon Anode. Advanced Energy Materials, 2016, 6, 1501874.	19.5	814
3	New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon. Nano Letters, 2015, 15, 5888-5892.	9.1	662
4	Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10662.	10.3	337
5	Mechanism of Na″on Storage in Hard Carbon Anodes Revealed by Heteroatom Doping. Advanced Energy Materials, 2017, 7, 1602894.	19.5	332
6	Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon, 2014, 76, 165-174.	10.3	279
7	Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions. Energy Storage Materials, 2019, 16, 6-23.	18.0	243
8	Electrolytes, SEI Formation, and Binders: A Review of Nonelectrode Factors for Sodiumâ€lon Battery Anodes. Small, 2018, 14, e1703576.	10.0	235
9	Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent. ACS Applied Materials & Dehydration Agent.	8.0	226
10	Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries. ACS Central Science, 2015, 1, 516-522.	11.3	202
11	Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode. Chemistry of Materials, 2017, 29, 2314-2320.	6.7	177
12	High Capacity of Hard Carbon Anode in Na-Ion Batteries Unlocked by PO _{<i>x</i>} Doping. ACS Energy Letters, 2016, 1, 395-401.	17.4	172
13	Recent Development on Anodes for Na″on Batteries. Israel Journal of Chemistry, 2015, 55, 486-507.	2.3	169
14	Hydroniumâ€lon Batteries with Perylenetetracarboxylic Dianhydride Crystals as an Electrode. Angewandte Chemie - International Edition, 2017, 56, 2909-2913.	13.8	169
15	Hard carbon anodes of sodium-ion batteries: undervalued rate capability. Chemical Communications, 2017, 53, 2610-2613.	4.1	167
16	Mg-Ion Battery Electrode: An Organic Solid's Herringbone Structure Squeezed upon Mg-Ion Insertion. Journal of the American Chemical Society, 2017, 139, 13031-13037.	13.7	161
17	A perylene anhydride crystal as a reversible electrode for K-ion batteries. Energy Storage Materials, 2016, 2, 63-68.	18.0	141
18	Internal structure $\hat{a}\in$ Na storage mechanisms $\hat{a}\in$ Electrochemical performance relations in carbons. Progress in Materials Science, 2018, 97, 170-203.	32.8	100

#	Article	IF	Citations
19	New Paradigms on the Nature of Solid Electrolyte Interphase Formation and Capacity Fading of Hard Carbon Anodes in Naâ€lon Batteries. Advanced Materials Interfaces, 2016, 3, 1600449.	3.7	74
20	Understanding Full-Cell Evolution and Non-chemical Electrode Crosstalk of Li-Ion Batteries. Joule, 2018, 2, 1146-1159.	24.0	71
21	Electrochemical Properties and Theoretical Capacity for Sodium Storage in Hard Carbon: Insights from First Principles Calculations. Chemistry of Materials, 2019, 31, 658-677.	6.7	60
22	In Operando Acoustic Detection of Lithium Metal Plating in Commercial LiCoO2/Graphite Pouch Cells. Cell Reports Physical Science, 2020, 1, 100035.	5.6	56
23	Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures. Chemical Communications, 2014, 50, 5435.	4.1	53
24	Hydroniumâ€ion Batteries with Perylenetetracarboxylic Dianhydride Crystals as an Electrode. Angewandte Chemie, 2017, 129, 2955-2959.	2.0	53
25	Identify the Removable Substructure in Carbon Activation. Chemistry of Materials, 2017, 29, 7288-7295.	6.7	51
26	Understanding Adverse Effects of Temperature Shifts on Li-Ion Batteries: An Operando Acoustic Study. Journal of the Electrochemical Society, 2020, 167, 090503.	2.9	47
27	Toward Higher Capacities of Hydrocarbon Cathodes in Dual-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43311-43315.	8.0	37
28	Operando Acoustic Monitoring of SEI Formation and Long-Term Cycling in NMC/SiGr Composite Pouch Cells. Journal of the Electrochemical Society, 2020, 167, 020517.	2.9	36
29	Impact of Non-Arrhenius Temperature Behavior on the Fast-Charging Capabilities of LiCoO ₂ –Graphite Lithium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 1731-1741.	3.1	7
30	Anode Materials: Hard Carbon Microspheres: Potassiumâ€lon Anode Versus Sodiumâ€lon Anode (Adv.) Tj ETQq0	0 0 rgBT	/Oyerlock 10
31	Battery Technology: New Paradigms on the Nature of Solid Electrolyte Interphase Formation and Capacity Fading of Hard Carbon Anodes in Naâ€lon Batteries (Adv. Mater. Interfaces 19/2016). Advanced Materials Interfaces, 2016, 3, .	3.7	0
32	Innentitelbild: Hydroniumâ€ion Batteries with Perylenetetracarboxylic Dianhydride Crystals as an Electrode (Angew. Chem. 11/2017). Angewandte Chemie, 2017, 129, 2852-2852.	2.0	0