
Stephanie L Borgland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1219275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optogenetic stimulation of lateral hypothalamic orexin/dynorphin inputs in the ventral tegmental area potentiates mesolimbic dopamine neurotransmission and promotes reward-seeking behaviours. Neuropsychopharmacology, 2022, 47, 728-740.	5.4	22
2	Cellular and behavioral basis of cannabinioid and opioid interactions: Implications for opioid dependence and withdrawal. Journal of Neuroscience Research, 2022, 100, 278-296.	2.9	12
3	Activation of LH GABAergic inputs counteracts fastingâ€induced changes in tVTA/RMTG neurons. Journal of Physiology, 2022, 600, 2203-2224.	2.9	2
4	Identification of a Potent Human Trace Amine-Associated Receptor 1 Antagonist. ACS Chemical Neuroscience, 2022, 13, 1082-1095.	3.5	11
5	Insulin and endocannabinoids in the mesolimbic system. Journal of Neuroendocrinology, 2021, 33, e12965.	2.6	12
6	Can treatment of obesity reduce depression or vice versa?. Journal of Psychiatry and Neuroscience, 2021, 46, E313-E318.	2.4	6
7	Obesity-induced astrocyte dysfunction impairs heterosynaptic plasticity in the orbitofrontal cortex. Cell Reports, 2021, 36, 109563.	6.4	20
8	Corticosterone Attenuates Reward-Seeking Behavior and Increases Anxiety via D2 Receptor Signaling in Ventral Tegmental Area Dopamine Neurons. Journal of Neuroscience, 2021, 41, 1566-1581.	3.6	20
9	The orbitofrontal cortex, food intake and obesity. Journal of Psychiatry and Neuroscience, 2020, 45, 304-312.	2.4	52
10	Sex differences in the effect of acute fasting on excitatory and inhibitory synapses onto ventral tegmental area dopamine neurons. Journal of Physiology, 2020, 598, 5523-5539.	2.9	10
11	Maternal low-dose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring. Gut, 2020, 69, 1807-1817.	12.1	55
12	Mu-Opioids Suppress GABAergic Synaptic Transmission onto Orbitofrontal Cortex Pyramidal Neurons with Subregional Selectivity. Journal of Neuroscience, 2020, 40, 5894-5907.	3.6	17
13	Dopamine Inputs from the Ventral Tegmental Area into the Medial Prefrontal Cortex Modulate Neuropathic Pain-Associated Behaviors in Mice. Cell Reports, 2020, 31, 107812.	6.4	47
14	Insulin actions in the mesolimbic dopamine system. Experimental Neurology, 2019, 320, 113006.	4.1	26
15	Releasing the brake on eating. Science, 2019, 364, 1233-1234.	12.6	2
16	Peripheral nerve injury-induced alterations in VTA neuron firing properties. Molecular Brain, 2019, 12, 89.	2.6	26
17	Hypothalamic control of homeostasis. Neuropharmacology, 2019, 154, 1-3.	4.1	2
18	Low-Dose Stevia (Rebaudioside A) Consumption Perturbs Gut Microbiota and the Mesolimbic Dopamine Reward System. Nutrients, 2019, 11, 1248.	4.1	49

STEPHANIE L BORGLAND

#	Article	IF	CITATIONS
19	Diversity in the lateral hypothalamic input to the ventral tegmental area. Neuropharmacology, 2019, 154, 4-12.	4.1	22
20	Insulin in the ventral tegmental area reduces cocaineâ€evoked dopamine in the nucleus accumbens <i>inÂvivo</i> . European Journal of Neuroscience, 2019, 50, 2146-2155.	2.6	30
21	Dopaminergic modulation of pain signals in the medial prefrontal cortex: Challenges and perspectives. Neuroscience Letters, 2019, 702, 71-76.	2.1	20
22	Opioid and hypocretin neuromodulation of ventral tegmental area neuronal subpopulations. British Journal of Pharmacology, 2018, 175, 2825-2833.	5.4	12
23	Role for fatty acid amide hydrolase (FAAH) in the leptin-mediated effects on feeding and energy balance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7605-7610.	7.1	35
24	Behavioral Effects of a Potential Novel TAAR1 Antagonist. Frontiers in Pharmacology, 2018, 9, 953.	3.5	8
25	Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nature Medicine, 2017, 23, 355-360.	30.7	130
26	Projection-Target-Defined Effects of Orexin and Dynorphin on VTA Dopamine Neurons. Cell Reports, 2017, 18, 1346-1355.	6.4	107
27	Cadherins mediate cocaine-induced synaptic plasticity and behavioral conditioning. Nature Neuroscience, 2017, 20, 540-549.	14.8	29
28	Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits. Neuropharmacology, 2017, 124, 38-51.	4.1	79
29	Obesity-Induced Structural and Neuronal Plasticity in the Lateral Orbitofrontal Cortex. Neuropsychopharmacology, 2017, 42, 1480-1490.	5.4	38
30	Hypocretin/Orexin and Plastic Adaptations Associated with Drug Abuse. Current Topics in Behavioral Neurosciences, 2016, 33, 283-304.	1.7	12
31	Age-Dependent D1–D2 Receptor Coactivation in the Lateral Orbitofrontal Cortex Potentiates NMDA Receptors and Facilitates Cognitive Flexibility. Cerebral Cortex, 2016, 26, 4524-4539.	2.9	13
32	Consumption of palatable food primes food approach behavior by rapidly increasing synaptic density in the VTA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2520-2525.	7.1	60
33	Mesolimbic dopamine and its neuromodulators in obesity and binge eating. CNS Spectrums, 2015, 20, 574-583.	1.2	50
34	Isovaline Does Not Activate GABAB Receptor-Coupled Potassium Currents in GABAB Expressing AtT-20 Cells and Cultured Rat Hippocampal Neurons. PLoS ONE, 2015, 10, e0118497.	2.5	3
35	Orexin Signaling in the VTA Gates Morphine-Induced Synaptic Plasticity. Journal of Neuroscience, 2015, 35, 7295-7303.	3.6	59
36	Regulation of the mesolimbic dopamine circuit by feeding peptides. Neuroscience, 2015, 289, 19-42.	2.3	79

Stephanie L Borgland

#	Article	IF	CITATIONS
37	Changes in mu-opioid receptor expression and function in the mesolimbic system after long-term access to a palatable diet. , 2015, 154, 110-119.		18
38	Orexin/hypocretin role in reward: implications for opioid and other addictions. British Journal of Pharmacology, 2015, 172, 334-348.	5.4	149
39	Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1648-55.	7.1	208
40	Sustained <i>N</i> â€methylâ€ <scp>d</scp> â€aspartate receptor hypofunction remodels the dopamine system and impairs phasic signaling. European Journal of Neuroscience, 2014, 40, 2255-2263.	2.6	15
41	Palmitoylation of δ-catenin by DHHC5 mediates activity-induced synapse plasticity. Nature Neuroscience, 2014, 17, 522-532.	14.8	110
42	GABA _B modulation of dopamine release in the nucleus accumbens core. European Journal of Neuroscience, 2014, 40, 3472-3480.	2.6	63
43	Orexin/hypocretin in the Ventral Tegmental Area is Necessary for Morphine-Induced Synaptic Plasticity of Dopamine Neurons. , 2014, , 240-241.		0
44	Insulin Induces Long-term Depression in VTA DA Neurons via an Endocannabinoid-mediated Mechanism. , 2014, , 253.		0
45	Presynaptic Leptin Action Suppresses Excitatory Synaptic Transmission onto Ventral Tegmental Area Dopamine Neurons. Biological Psychiatry, 2013, 73, 860-868.	1.3	55
46	Food for Thought: Hormonal, Experiential, and Neural Influences on Feeding and Obesity. Journal of Neuroscience, 2013, 33, 17610-17616.	3.6	32
47	Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids. Nature Neuroscience, 2013, 16, 300-308.	14.8	203
48	Cocaine and Nicotine Research Illustrates a Range of Hypocretin Mechanisms in Addiction. Vitamins and Hormones, 2012, 89, 291-313.	1.7	8
49	Hypocretin modulation of drug-induced synaptic plasticity. Progress in Brain Research, 2012, 198, 123-131.	1.4	34
50	Local hypocretin-1 modulates terminal dopamine concentration in the nucleus accumbens shell. Frontiers in Behavioral Neuroscience, 2012, 6, 82.	2.0	49
51	Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake. European Journal of Neuroscience, 2012, 36, 2336-2346.	2.6	173
52	A role for hypocretin/orexin in motivation. Behavioural Brain Research, 2011, 217, 446-453.	2.2	98
53	Emerging, reemerging, and forgotten brain areas of the reward circuit: Notes from the 2010 Motivational Neural Networks conference. Behavioural Brain Research, 2011, 225, 348-357.	2.2	25
54	Effects of Orexin/Hypocretin on Ventral Tegmental Area Dopamine Neurons: An Emerging Role in		0

Addiction., 2011, , 241-251.

STEPHANIE L BORGLAND

#	Article	IF	CITATIONS
55	Convergent actions of orexin/hypocretin and CRF on dopamine neurons: Emerging players in addiction. Brain Research, 2010, 1314, 139-144.	2.2	68
56	Orexin/hypocretin in psychiatric disorders: present state of knowledge and future potential. Neuropsychopharmacology, 2010, 35, 353-354.	5.4	21
57	Orexin A/Hypocretin-1 Selectively Promotes Motivation for Positive Reinforcers. Journal of Neuroscience, 2009, 29, 11215-11225.	3.6	322
58	Role of orexin/hypocretin and CRF in the formation of drug-dependent synaptic plasticity in the mesolimbic system. Neuropharmacology, 2009, 56, 107-111.	4.1	61
59	Inhibition of orexin-1/hypocretin-1 receptors inhibits yohimbine-induced reinstatement of ethanol and sucrose seeking in Long–Evans rats. Psychopharmacology, 2008, 199, 109-117.	3.1	214
60	Orexin B/hypocretin 2 increases glutamatergic transmission to ventral tegmental area neurons. European Journal of Neuroscience, 2008, 28, 1545-1556.	2.6	129
61	Acute cocaine exposure alters spine density and longâ€ŧerm potentiation in the ventral tegmental area. European Journal of Neuroscience, 2007, 26, 749-756.	2.6	87
62	Orexin A in the VTA Is Critical for the Induction of Synaptic Plasticity and Behavioral Sensitization to Cocaine. Neuron, 2006, 49, 589-601.	8.1	651
63	Addiction and Arousal: Alternative Roles of Hypothalamic Peptides. Journal of Neuroscience, 2006, 26, 10372-10375.	3.6	86
64	Ethanol Alters Trafficking and Functional N-Methyl-D-aspartate Receptor NR2 Subunit Ratio via H-Ras. Journal of Biological Chemistry, 2005, 280, 31450-31459.	3.4	70
65	Acute and Chronic Cocaine-Induced Potentiation of Synaptic Strength in the Ventral Tegmental Area: Electrophysiological and Behavioral Correlates in Individual Rats. Journal of Neuroscience, 2004, 24, 7482-7490.	3.6	523
66	Opioid Agonists Have Different Efficacy Profiles for G Protein Activation, Rapid Desensitization, and Endocytosis of Mu-opioid Receptors. Journal of Biological Chemistry, 2003, 278, 18776-18784.	3.4	142
67	Adenovirus Vector-Induced Inflammation: Capsid-Dependent Induction of the C-C Chemokine RANTES Requires NF- <i>κ</i> B. Human Gene Therapy, 2002, 13, 367-379.	2.7	92
68	Prostaglandin E2inhibits calcium current in two subâ€populations of acutely isolated mouse trigeminal sensory neurons. Journal of Physiology, 2002, 539, 433-444.	2.9	35
69	Acute Opioid Receptor Desensitization And Tolerance: Is There A Link?. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 147-154.	1.9	91
70	Nociceptin inhibits calcium channel currents in a subpopulation of small nociceptive trigeminal ganglion neurons in mouse. Journal of Physiology, 2001, 536, 35-47.	2.9	79
71	Adenovirus Vector-Induced Expression of the C-X-C Chemokine IP-10 Is Mediated through Capsid-Dependent Activation of NF-1°B. Journal of Virology, 2000, 74, 3941-3947.	3.4	134
72	Continued morphine modulation of calcium channel currents in acutely isolated locus coeruleus neurons from morphine-dependent rats. British Journal of Pharmacology, 1999, 128, 1561-1569.	5.4	38

#	Article	IF	CITATIONS
73	Effect of adenosine receptor agonists on release of the nucleoside analogue [3H]formycin B from cultured smooth muscle DDT1 MF-2 cells. European Journal of Pharmacology, 1998, 346, 339-344.	3.5	3
74	Effects of propentofylline on adenosine receptor activity in Chinese hamster ovary cell lines transfected with human A1, A2A, or A2B receptors and a luciferase reporter gene. Canadian Journal of Physiology and Pharmacology, 1998, 76, 1132-1138.	1.4	6
75	Effects of propentofylline on adenosine receptor activity in Chinese hamster ovary cell lines transfected with human A ₁ , A _{2A} , or A _{2B} receptors and a luciferase reporter gene. Canadian Journal of Physiology and Pharmacology, 1998, 76, 1132-1138.	1.4	2