Nikolay M Filipov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12191150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sex differences in behavior, response to LPS, and glucose homeostasis in middle-aged mice. Behavioural Brain Research, 2022, 418, 113628.	2.2	13
2	Integrative interactomics applied to bovine fescue toxicosis. Scientific Reports, 2022, 12, 4899.	3.3	3
3	Lacto-N-fucopentaose-III ameliorates acute and persisting hippocampal synaptic plasticity and transmission deficits in a Gulf War Illness mouse model. Life Sciences, 2021, 279, 119707.	4.3	7
4	Lacto-N-fucopentaose-III (LNFPIII) ameliorates acute aberrations in hippocampal synaptic transmission in a Gulf War Illness animal model. Brain Research, 2021, 1766, 147513.	2.2	3
5	Delayed treatment with the immunotherapeutic LNFPIII ameliorates multiple neurological deficits in a pesticide-nerve agent prophylactic mouse model of Gulf War Illness. Neurotoxicology and Teratology, 2021, 87, 107012.	2.4	6
6	Sex- and ageâ€dependent alterations of splenic immune cell profile and NK cell phenotypes and function in C57BL/6J mice. Immunity and Ageing, 2021, 18, 3.	4.2	34
7	Assessing the Beneficial Effects of the Immunomodulatory Glycan LNFPIII on Gut Microbiota and Health in a Mouse Model of Gulf War Illness. International Journal of Environmental Research and Public Health, 2020, 17, 7081.	2.6	11
8	Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets. Nutrients, 2020, 12, 2090.	4.1	7
9	Use of Integrative Interactomics for Improvement of Farm Animal Health and Welfare: An Example with Fescue Toxicosis. Toxins, 2020, 12, 633.	3.4	5
10	Dorsoventral-Specific Effects of Nerve Agent Surrogate Diisopropylfluorophosphate on Synaptic Transmission in the Mouse Hippocampus. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, 10-23.	2.5	5
11	Toxic tall fescue grazing increases susceptibility of the Angus steer fecal microbiota and plasma/urine metabolome to environmental effects. Scientific Reports, 2020, 10, 2497.	3.3	11
12	Response of Beef Cattle Fecal Microbiota to Grazing on Toxic Tall Fescue. Applied and Environmental Microbiology, 2019, 85, .	3.1	19
13	Overview of peripheral and central inflammatory responses and their contribution to neurotoxicity. Advances in Neurotoxicology, 2019, 3, 169-193.	1.9	5
14	Septotemporalâ€specific Effects of a Gulf War Illness Sarin Surrogate, Diisopropylfluorophosphate, on Synaptic Transmission in the Mouse Hippocampus. FASEB Journal, 2019, 33, 813.1.	0.5	0
15	Effects of high-fat diet and age on the blood lipidome and circulating endocannabinoids of female C57BL/6 mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 26-39.	2.4	22
16	Dietary Glycation Products Regulate Immune Homeostasis: Early Glycation Products Promote Prostate Cancer Cell Proliferation through Modulating Macrophages. Molecular Nutrition and Food Research, 2018, 62, 1700641.	3.3	16
17	Metabolomics of fescue toxicosis in grazing beef steers. Food and Chemical Toxicology, 2017, 105, 285-299.	3.6	16
18	Behavioral and monoamine perturbations in adult male mice with chronic inflammation induced by repeated peripheral lipopolysaccharide administration. Behavioural Brain Research, 2016, 302, 279-290.	2.2	23

Νικοίας Μ Filipov

#	Article	IF	CITATIONS
19	Time-dependent behavioral, neurochemical, and metabolic dysregulation in female C57BL/6 mice caused by chronic high-fat diet intake. Physiology and Behavior, 2016, 157, 196-208.	2.1	55
20	Brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water. Archives of Toxicology, 2014, 88, 47-64.	4.2	56
21	Short-term oral atrazine exposure alters the plasma metabolome of male C57BL/6 mice and disrupts α-linolenate, tryptophan, tyrosine and other major metabolic pathways. Toxicology, 2014, 326, 130-141.	4.2	28
22	Gestational and Lactational Exposure to Atrazine via the Drinking Water Causes Specific Behavioral Deficits and Selectively Alters Monoaminergic Systems in C57BL/6 Mouse Dams, Juvenile and Adult Offspring. Toxicological Sciences, 2014, 141, 90-102.	3.1	51
23	Differentiation state-dependent effects of in vitro exposure to atrazine or its metabolite diaminochlorotriazine in a dopaminergic cell line. Life Sciences, 2013, 92, 81-90.	4.3	21
24	Short-term atrazine exposure causes behavioral deficits and disrupts monoaminergic systems in male C57BL/6 mice. Neurotoxicology and Teratology, 2013, 39, 26-35.	2.4	74
25	Estimation of placental and lactational transfer and tissue distribution of atrazine and its main metabolites in rodent dams, fetuses, and neonates with physiologically based pharmacokinetic modeling. Toxicology and Applied Pharmacology, 2013, 273, 140-158.	2.8	57
26	Role of glial cells in manganese neurotoxicity. Journal of Applied Toxicology, 2012, 32, 310-317.	2.8	52
27	Manganese potentiates LPS-induced heme-oxygenase 1 in microglia but not dopaminergic cells: Role in controlling microglial hydrogen peroxide and inflammatory cytokine output. NeuroToxicology, 2011, 32, 683-692.	3.0	37
28	A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse. Toxicology and Applied Pharmacology, 2011, 251, 16-31.	2.8	38
29	Manganese modulation of MAPK pathways: effects on upstream mitogen activated protein kinase kinases and mitogen activated kinase phosphatase-1 in microglial cells. Journal of Applied Toxicology, 2011, 31, 1-10.	2.8	27
30	Disposition of the Herbicide 2-Chloro-4-(ethylamino)-6-(isopropylamino)- <i>s</i> -triazine (Atrazine) and Its Major Metabolites in Mice: A Liquid Chromatography/Mass Spectrometry Analysis of Urine, Plasma, and Tissue Levels. Drug Metabolism and Disposition, 2009, 37, 776-786.	3.3	71
31	Strain-specific sensitivity to MPTP of C57BL/6 and BALB/c mice is age dependent. NeuroReport, 2009, 20, 713-717.	1.2	24
32	Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. Immunity and Ageing, 2008, 5, 1.	4.2	79
33	Alteration of dopamine uptake into rat striatal vesicles and synaptosomes caused by an in vitro exposure to atrazine and some of its metabolites. Toxicology, 2008, 248, 52-58.	4.2	43
34	Alteration of Neurotrophins in the Hippocampus and Cerebral Cortex of Young Rats Exposed to Chlorpyrifos and Methyl Parathion. Toxicological Sciences, 2007, 100, 445-455.	3.1	36
35	Direct effects of manganese compounds on dopamine and its metabolite Dopac: An in vitro study. Environmental Toxicology and Pharmacology, 2007, 23, 286-296.	4.0	49
36	Dopaminergic toxicity of the herbicide atrazine in rat striatal slices. Toxicology, 2007, 232, 68-78.	4.2	60

Νικοίαν Μ Filipov

#	Article	IF	CITATIONS
37	In vitro atrazine exposure affects the phenotypic and functional maturation of dendritic cells. Toxicology and Applied Pharmacology, 2007, 223, 206-217.	2.8	48
38	Determination of atrazine and its metabolites in mouse urine and plasma by LC–MS analysis. Analytical Biochemistry, 2006, 351, 161-173.	2.4	50
39	Immunotoxic Effects of Short-term Atrazine Exposure in Young Male C57BL/6 Mice. Toxicological Sciences, 2005, 86, 324-332.	3.1	79
40	Manganese Potentiates In Vitro Production of Proinflammatory Cytokines and Nitric Oxide by Microglia Through a Nuclear Factor kappa B-Dependent Mechanism. Toxicological Sciences, 2005, 84, 139-148.	3.1	137
41	Influence of Polychlorinated Biphenyls and Turning Preference on Striatal Dopamine Metabolism. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2005, 68, 167-183.	2.3	3
42	Compromised peripheral immunity of mice injected intrastriatally with six-hydroxydopamine. Journal of Neuroimmunology, 2002, 132, 129-139.	2.3	22