
Linda J S Allen, Ljs Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12191031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Introduction to Stochastic Epidemic Models. Lecture Notes in Mathematics, 2008, , 81-130.	0.2	222
2	A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis. Infectious Disease Modelling, 2017, 2, 128-142.	1.9	205
3	Construction of Equivalent Stochastic Differential Equation Models. Stochastic Analysis and Applications, 2008, 26, 274-297.	1.5	134
4	Extinction thresholds in deterministic and stochastic epidemic models. Journal of Biological Dynamics, 2012, 6, 590-611.	1.7	117
5	A comparison of three different stochastic population models with regard to persistence time. Theoretical Population Biology, 2003, 64, 439-449.	1.1	100
6	Stochastic models for virus and immune system dynamics. Mathematical Biosciences, 2011, 234, 84-94.	1.9	85
7	Persistence and extinction in single-species reaction-diffusion models. Bulletin of Mathematical Biology, 1983, 45, 209-227.	1.9	80
8	Persistence, extinction, and critical patch number for island populations. Journal of Mathematical Biology, 1987, 24, 617-625.	1.9	79
9	Competitive exclusion and coexistence for pathogens in an epidemic model with variable population size. Journal of Mathematical Biology, 2003, 47, 153-168.	1.9	67
10	The dynamics of two viral infections in a single host population with applications to hantavirus. Mathematical Biosciences, 2003, 186, 191-217.	1.9	58
11	Probability of a Disease Outbreak in Stochastic Multipatch Epidemic Models. Bulletin of Mathematical Biology, 2013, 75, 1157-1180.	1.9	56
12	Mathematical Models for Hantavirus Infection in Rodents. Bulletin of Mathematical Biology, 2006, 68, 511-524.	1.9	49
13	Establishing a beachhead: A stochastic population model with an Allee effect applied to species invasion. Theoretical Population Biology, 2007, 71, 290-300.	1.1	48
14	Population extinction in discrete-time stochastic population models with an Allee effect. Journal of Difference Equations and Applications, 2005, 11, 273-293.	1.1	46
15	Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3, 445-458.	1.9	45
16	Multi-patch deterministic and stochastic models for wildlife diseases. Journal of Biological Dynamics, 2007, 1, 63-85.	1.7	41
17	The basic reproduction number in epidemic models with periodic demographics. Journal of Biological Dynamics, 2009, 3, 116-129.	1.7	41
18	Modeling Virus Coinfection to Inform Management of Maize Lethal Necrosis in Kenya. Phytopathology, 2017, 107, 1095-1108.	2.2	41

Linda J S Allen, Ljs Allen

#	Article	IF	CITATIONS
19	Dispersal and competition models for plants. Journal of Mathematical Biology, 1996, 34, 455-481.	1.9	40
20	Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality. Bulletin of Mathematical Biology, 2004, 66, 841-864.	1.9	35
21	Disease emergence in multi-host epidemic models. Mathematical Medicine and Biology, 2007, 24, 17-34.	1.2	31
22	The evolution of plant virus transmission pathways. Journal of Theoretical Biology, 2016, 396, 75-89.	1.7	30
23	A habitat-based model for the spread of hantavirus between reservoir and spillover species. Journal of Theoretical Biology, 2009, 260, 510-522.	1.7	29
24	A comparison of persistence-time estimation for discrete and continuous stochastic population models that include demographic and environmental variability. Mathematical Biosciences, 2005, 196, 14-38.	1.9	28
25	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. PLoS Biology, 2019, 17, e3000551.	5.6	26
26	Modelling Vector Transmission and Epidemiology of Co-Infecting Plant Viruses. Viruses, 2019, 11, 1153.	3.3	23
27	Population Extinction and Quasi-stationary Behavior in Stochastic Density-dependent Structured Models. Bulletin of Mathematical Biology, 2000, 62, 199-228.	1.9	21
28	The evolution of parasitic and mutualistic plant–virus symbioses through transmission-virulence trade-offs. Virus Research, 2017, 241, 77-87.	2.2	18
29	A stochastic model for transmission, extinction and outbreak of Escherichia coli O157:H7 in cattle as affected by ambient temperature and cleaning practices. Journal of Mathematical Biology, 2014, 69, 501-532.	1.9	16
30	The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population. Mathematical Biosciences, 2021, 331, 108516.	1.9	16
31	Comparison of Markov Chain and Stochastic Differential Equation Population Models Under Higher-Order Moment Closure Approximations. Stochastic Analysis and Applications, 2010, 28, 907-927.	1.5	15
32	Free-virus and cell-to-cell transmission in models of equine infectious anemia virus infection. Mathematical Biosciences, 2015, 270, 237-248.	1.9	15
33	The effect of delay in viral production in within-host models during early infection. Journal of Biological Dynamics, 2019, 13, 47-73.	1.7	14
34	Models of cytokine dynamics in the inflammatory response of viral zoonotic infectious diseases. Mathematical Medicine and Biology, 2019, 36, 269-295.	1.2	13
35	Duration of a minor epidemic. Infectious Disease Modelling, 2018, 3, 60-73.	1.9	12
36	Disease Emergence in Multi-Patch Stochastic Epidemic Models with Demographic and Seasonal Variability. Bulletin of Mathematical Biology, 2020, 82, 152.	1.9	12

Linda J S Allen, Ljs Allen

#	Article	IF	CITATIONS
37	Stochastic models for competing species with a shared pathogen. Mathematical Biosciences and Engineering, 2012, 9, 461-485.	1.9	12
38	Probability of a zoonotic spillover with seasonal variation. Infectious Disease Modelling, 2021, 6, 514-531.	1.9	10
39	Estimating watershed area for playas in the Southern High Plains, USA. Wetlands, 2009, 29, 387-395.	1.5	8
40	Impact of Variability in Stochastic Models of Bacteria-Phage Dynamics Applicable to Phage Therapy. Stochastic Analysis and Applications, 2014, 32, 427-449.	1.5	8
41	Dispersal and competition models for plants. Journal of Mathematical Biology, 1996, 34, 455-481.	1.9	8
42	Searching for Superspreaders: Identifying Epidemic Patterns Associated with Superspreading Events in Stochastic Models. Association for Women in Mathematics Series, 2018, , 1-29.	0.4	6
43	Effects of environmental variability on superspreading transmission events in stochastic epidemic models. Infectious Disease Modelling, 2021, 6, 560-583.	1.9	6
44	Stochastic models of infectious diseases in a periodic environment with application to cholera epidemics. Journal of Mathematical Biology, 2021, 82, 48.	1.9	6
45	Basic stochastic models for viral infection within a host. Mathematical Biosciences and Engineering, 2012, 9, 915-935.	1.9	6
46	Predicting population extinction or disease outbreaks with stochastic models. Letters in Biomathematics, 2017, 4, 1-22.	0.1	3
47	Stochastic two-group models with transmission dependent on host infectivity or susceptibility. Journal of Biological Dynamics, 2019, 13, 201-224.	1.7	3
48	Stochastic Multigroup Epidemic Models: Duration and Final Size. The IMA Volumes in Mathematics and Its Applications, 2019, , 483-507.	0.5	2
49	Power law incidence rate in epidemic models. Physics of Life Reviews, 2016, 18, 98-99.	2.8	1
50	Continuous-Time and Continuous-State Branching Processes. , 2015, , 29-35.		0
51	Applications of Multi-Type Branching Processes. , 2015, , 21-27.		Ο
52	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. , 2019, 17, e3000551.		0
53	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. , 2019, 17, e3000551.		Ο
54	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. , 2019, 17, e3000551.		0

#	Article	IF	CITATIONS
55	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. , 2019, 17, e3000551.		0
56	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. , 2019, 17, e3000551.		0
57	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. , 2019, 17, e3000551.		0