
## **Cheng-gong Sun**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1219085/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effectiveness of bed additives in abating agglomeration during biomass air/oxy combustion in a fluidised bed combustor. Renewable Energy, 2022, 185, 945-958.                                                                                                                                                                                                      | 4.3 | 3         |
| 2  | Microwave-triggered low temperature thermal reduction of Zr-modified high entropy oxides with extraordinary thermochemical H2 production performance. Energy Conversion and Management, 2022, 252, 115125.                                                                                                                                                         | 4.4 | 15        |
| 3  | Development of cost-effective PCM-carbon foam composites for thermal energy storage. Energy Reports, 2022, 8, 1696-1703.                                                                                                                                                                                                                                           | 2.5 | 24        |
| 4  | From polyvinyl chloride waste to activated carbons: the role of occurring additives on porosity development and gas adsorption properties. Science of the Total Environment, 2022, 833, 154894.                                                                                                                                                                    | 3.9 | 12        |
| 5  | Synthesis and characterization of advanced bio-carbon materials from Kraft lignin with enhanced CO2 capture properties. Journal of Environmental Chemical Engineering, 2022, 10, 107471.                                                                                                                                                                           | 3.3 | 4         |
| 6  | Development of MgSO <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="d1e673" altimg="si1.svg"&gt;<mml:msub><mml:mrow<br>/&gt;<mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:mrow<br></mml:msub></mml:math> /mesoporous silica<br>composites for thermochemical energy storage: the role of porous structure on water adsorption. | 2.5 | 7         |
| 7  | Energy Reports, 2022, 8, 4913-4921.<br>Amine functionalized mesocellular silica foam as highly efficient sorbents for CO2 capture.<br>Separation and Purification Technology, 2022, 299, 121539.                                                                                                                                                                   | 3.9 | 8         |
| 8  | Microwave steam gasification of semi-coke derived from co-pyrolysis of fungus chaff and lignite.<br>International Journal of Coal Preparation and Utilization, 2021, 41, 830-843.                                                                                                                                                                                  | 1.2 | 6         |
| 9  | Performance of a silica-polyethyleneimine adsorbent for post-combustion CO2 capture on a 100Âkg scale in a fluidized bed continuous unit. Chemical Engineering Journal, 2021, 407, 127209.                                                                                                                                                                         | 6.6 | 7         |
| 10 | Experimental investigations on the chlorine-induced corrosion of HVOF thermal sprayed Stellite-6<br>and NiAl coatings with fluidised bed biomass/anthracite combustion systems. Fuel, 2021, 288, 119607.                                                                                                                                                           | 3.4 | 13        |
| 11 | Influence of co-processing of coal and oil shale on combustion characteristics, kinetics and ash fusion behaviour. Energy, 2021, 216, 119229.                                                                                                                                                                                                                      | 4.5 | 16        |
| 12 | Comprehensive evaluation of ionic liquid [Bmim][PF6] for absorbing toluene and acetone.<br>Environmental Pollution, 2021, 285, 117675.                                                                                                                                                                                                                             | 3.7 | 17        |
| 13 | Adsorption performance and kinetic study of hierarchical porous Fe-based MOFs for toluene removal.<br>Science of the Total Environment, 2021, 793, 148622.                                                                                                                                                                                                         | 3.9 | 58        |
| 14 | Chemical Characteristics of Ash Formed from the Combustion of Shoe Manufacturing Waste in a 2.5<br>MWth Circulating Fluidized Bed Combustor. Waste and Biomass Valorization, 2020, 11, 4551-4560.                                                                                                                                                                  | 1.8 | 2         |
| 15 | Preparation of 3D network CNTs-modified nickel foam with enhanced microwave absorptivity and application potential in wastewater treatment. Science of the Total Environment, 2020, 702, 135006.                                                                                                                                                                   | 3.9 | 10        |
| 16 | Design and development of 3D hierarchical ultra-microporous CO2-sieving carbon architectures for potential flow-through CO2 capture at typical practical flue gas temperatures. Journal of Materials Chemistry A, 2020, 8, 17025-17035.                                                                                                                            | 5.2 | 17        |
| 17 | Synthesis of functionalized 3D microporous carbon foams for selective CO2 capture. Chemical Engineering Journal, 2020, 402, 125459.                                                                                                                                                                                                                                | 6.6 | 20        |
| 18 | Demonstrating the applicability of chemical looping combustion for the regeneration of fluid catalytic cracking catalysts. Chemical Engineering Journal, 2020, 389, 124492.                                                                                                                                                                                        | 6.6 | 19        |

| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Cyclic performance evaluation of a polyethylenimine/silica adsorbent with steam regeneration using simulated NGCC flue gas and actual flue gas of a gas-fired boiler in a bubbling fluidized bed reactor.<br>International Journal of Greenhouse Gas Control, 2020, 95, 102975. | 2.3 | 6         |
| 20 | Comparative study of the inherent combustion reactivity of sawdust chars produced by TGA and in the drop tube furnace. Fuel Processing Technology, 2020, 201, 106361.                                                                                                           | 3.7 | 20        |
| 21 | Mesocellular silica foam supported polyamine adsorbents for dry CO2 scrubbing: Performance of single versus blended polyamines for impregnation. Applied Energy, 2019, 255, 113643.                                                                                             | 5.1 | 23        |
| 22 | Synthesis of microcapsules for carbon capture via needle-based droplet microfluidics. Energy<br>Procedia, 2019, 160, 443-450.                                                                                                                                                   | 1.8 | 8         |
| 23 | Exergetic, economic and carbon emission studies of bio-olefin production via indirect steam gasification process. Energy, 2019, 187, 115933.                                                                                                                                    | 4.5 | 19        |
| 24 | Continuous testing of silica-PEI adsorbents in a labscale twin bubbling fluidized-bed system.<br>International Journal of Greenhouse Gas Control, 2019, 82, 184-191.                                                                                                            | 2.3 | 19        |
| 25 | Selective low temperature chemical looping combustion of higher alkanes with Cu- and Mn- oxides.<br>Energy, 2019, 173, 658-666.                                                                                                                                                 | 4.5 | 22        |
| 26 | Mechanisms of Toluene Removal in Relation to the Main Components of Biosyngas in a Catalytic<br>Nonthermal Plasma Process. Energy & Fuels, 2019, 33, 4287-4301.                                                                                                                 | 2.5 | 18        |
| 27 | A novel approach to CO2 capture in Fluid Catalytic Cracking—Chemical Looping Combustion. Fuel, 2019, 244, 140-150.                                                                                                                                                              | 3.4 | 32        |
| 28 | Developing hierarchically ultra-micro/mesoporous biocarbons for highly selective carbon dioxide adsorption. Chemical Engineering Journal, 2019, 361, 199-208.                                                                                                                   | 6.6 | 79        |
| 29 | An investigation of lime addition to fuel as a countermeasure to bed agglomeration for the combustion of non-woody biomass fuels in a 20kWth bubbling fluidised bed combustor. Fuel, 2019, 240, 349-361.                                                                        | 3.4 | 25        |
| 30 | A Review of Stateâ€ofâ€theâ€Art Microfluidic Technologies for Environmental Applications: Detection and<br>Remediation. Global Challenges, 2019, 3, 1800060.                                                                                                                    | 1.8 | 66        |
| 31 | Microwave-based preparation and characterization of Fe-cored carbon nanocapsules with novel stability and super electromagnetic wave absorption performance. Carbon, 2018, 135, 1-11.                                                                                           | 5.4 | 60        |
| 32 | High Density and Super Ultraâ€Microporousâ€Activated Carbon Macrospheres with High Volumetric<br>Capacity for CO <sub>2</sub> Capture. Advanced Sustainable Systems, 2018, 2, 1700115.                                                                                          | 2.7 | 30        |
| 33 | Oxy-fuel combustion study of biomass fuels in a 20†kWth fluidized bed combustor. Fuel, 2018, 215, 778-786.                                                                                                                                                                      | 3.4 | 124       |
| 34 | Coupling detailed radiation model with process simulation in Aspen Plus: A case study on fluidized bed combustor. Applied Energy, 2018, 227, 168-179.                                                                                                                           | 5.1 | 18        |
| 35 | Ultrasonic and hydrothermal mediated synthesis routes for functionalized Mg-Al LDH: Comparison study on surface morphology, basic site strength, cyclic sorption efficiency and effectiveness.<br>Ultrasonics Sonochemistry, 2018, 40, 341-352.                                 | 3.8 | 38        |
| 36 | Synthesis and functionalisation of spherical meso-, hybrid meso/macro- and macro-porous cellular<br>silica foam materials with regulated pore sizes for CO <sub>2</sub> capture. Journal of Materials<br>Chemistry A, 2018, 6, 23587-23601.                                     | 5.2 | 32        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A facile route to bespoke macro- and mesoporous block copolymer microparticles. Polymer Chemistry, 2018, 9, 3808-3819.                                                                                                                                     | 1.9 | 7         |
| 38 | Structural transformation of fluid phase extracted from coal matrix during thermoplastic stage of coal pyrolysis. Fuel, 2018, 232, 374-383.                                                                                                                | 3.4 | 40        |
| 39 | Sonochemical surface functionalization of exfoliated LDH: Effect on textural properties, CO2<br>adsorption, cyclic regeneration capacities and subsequent gas uptake for simultaneous methanol<br>synthesis. Ultrasonics Sonochemistry, 2017, 39, 330-343. | 3.8 | 19        |
| 40 | Microwave-induced activation of additional active edge sites on the MoS 2 surface for enhanced Hg 0 capture. Applied Surface Science, 2017, 420, 439-445.                                                                                                  | 3.1 | 25        |
| 41 | Dynamic Experimental Investigation on the Volatilization Behavior of Lead and Cadmium in the<br>Simulated Municipal Solid Waste (MSW) Influenced by Sulfur Compounds during Incineration. Energy<br>& Fuels, 2017, 31, 847-853.                            | 2.5 | 8         |
| 42 | Process simulations of post-combustion CO 2 capture for coal and natural gas-fired power plants<br>using a polyethyleneimine/silica adsorbent. International Journal of Greenhouse Gas Control, 2017, 58,<br>276-289.                                      | 2.3 | 34        |
| 43 | Further Improvement of Fluidized Bed Models by Incorporating Zone Method with Aspen Plus<br>Interface. Energy Procedia, 2017, 105, 1895-1901.                                                                                                              | 1.8 | 3         |
| 44 | Effects of annealing temperature and time on decrepitation of lump coals and characteristics of resultant coal chars. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 732-744.                                                                     | 0.8 | 2         |
| 45 | Experimental investigation of woody and non-woody biomass combustion in a bubbling fluidised bed combustor focusing on gaseous emissions and temperature profiles. Energy, 2017, 141, 2069-2080.                                                           | 4.5 | 74        |
| 46 | Potassium and Zeolitic Structure Modified Ultra-microporous Adsorbent Materials from a Renewable<br>Feedstock with Favorable Surface Chemistry for CO <sub>2</sub> Capture. ACS Applied Materials &<br>Interfaces, 2017, 9, 26826-26839.                   | 4.0 | 36        |
| 47 | Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for post-combustion carbon capture. Applied Energy, 2016, 168, 394-405.                                                                                    | 5.1 | 136       |
| 48 | Experimental Evaluation of a Chinese Sulfur-Containing Lean Iron Ore as the Oxygen Carrier for Chemical-Looping Combustion. Industrial & Engineering Chemistry Research, 2016, 55, 428-435.                                                                | 1.8 | 11        |
| 49 | Impact of CO2 on biomass pyrolysis, nitrogen partitioning, and char combustion in a drop tube furnace. Journal of Analytical and Applied Pyrolysis, 2015, 113, 323-331.                                                                                    | 2.6 | 55        |
| 50 | Carbon Dioxide Separation from Nitrogen/Hydrogen Mixtures over Activated Carbon Beads:<br>Adsorption Isotherms and Breakthrough Studies. Energy & Fuels, 2015, 29, 3796-3807.                                                                              | 2.5 | 27        |
| 51 | Spherical potassium intercalated activated carbon beads for pulverised fuel CO2 post-combustion capture. Carbon, 2015, 94, 243-255.                                                                                                                        | 5.4 | 65        |
| 52 | Surface-modified spherical activated carbon materials for pre-combustion carbon dioxide capture.<br>RSC Advances, 2015, 5, 33681-33690.                                                                                                                    | 1.7 | 41        |
| 53 | Coking and deactivation of a mesoporous Ni–CaO–ZrO2 catalyst in dry reforming of methane: A study<br>under different feeding compositions. Fuel, 2015, 143, 527-535.                                                                                       | 3.4 | 90        |
| 54 | OxyCAP UK: Oxyfuel Combustion - academic Programme for the UK. Energy Procedia, 2014, 63, 504-510.                                                                                                                                                         | 1.8 | 1         |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Indirect electrochemical reduction of carbon dioxide to carbon nanopowders in molten alkali<br>carbonates: Process variables and product properties. Carbon, 2014, 73, 163-174.                | 5.4 | 122       |
| 56 | Performance of polyethyleneimine–silica adsorbent for post-combustion CO2 capture in a bubbling fluidized bed. Chemical Engineering Journal, 2014, 251, 293-303.                               | 6.6 | 79        |
| 57 | Nitrogen-enriched and hierarchically porous carbon macro-spheres – ideal for large-scale<br>CO <sub>2</sub> capture. Journal of Materials Chemistry A, 2014, 2, 5481-5489.                     | 5.2 | 66        |
| 58 | The Properties of Individual Carbon Residuals and Their Influence on The Deactivation of<br>Ni–CaO–ZrO <sub>2</sub> Catalysts in CH <sub>4</sub> Dry Reforming. ChemCatChem, 2014, 6, 640-648. | 1.8 | 69        |
| 59 | Capturing CO2 from ambient air using a polyethyleneimine–silica adsorbent in fluidized beds. Chemical<br>Engineering Science, 2014, 116, 306-316.                                              | 1.9 | 136       |
| 60 | Development of Low-Cost Functional Adsorbents for Control of Mercury (Hg) Emissions from Coal<br>Combustion. Energy & Fuels, 2013, 27, 3875-3882.                                              | 2.5 | 37        |
| 61 | Environmental Concerns Regarding CO2. , 2013, , 415-454.                                                                                                                                       |     | Ο         |
| 62 | Impact of biomass char on coal char burn-out under air and oxy-fuel conditions. Fuel, 2013, 114, 128-134.                                                                                      | 3.4 | 62        |
| 63 | CO <sub>2</sub> Capture with Activated Carbon Grafted by Nitrogenous Functional Groups. Energy<br>& Fuels, 2013, 27, 4818-4823.                                                                | 2.5 | 67        |
| 64 | High capacity co-precipitated manganese oxides sorbents for oxidative mercury capture. Fuel, 2013, 109, 559-562.                                                                               | 3.4 | 39        |
| 65 | Synthesis, characterization and evaluation of activated spherical carbon materials for CO2 capture.<br>Fuel, 2013, 113, 854-862.                                                               | 3.4 | 47        |
| 66 | Control of NOx emissions of a domestic/small-scale biomass pellet boiler by air staging. Fuel, 2013, 103, 792-798.                                                                             | 3.4 | 98        |
| 67 | Physical and electrochemical characterization of CuO-doped activated carbon in ionic liquid.<br>Electrochimica Acta, 2010, 55, 2667-2672.                                                      | 2.6 | 14        |
| 68 | Electrochemical performance of electrochemical capacitors using Cu(II)-containing ionic liquid as the electrolyte. Microporous and Mesoporous Materials, 2010, 128, 56-61.                     | 2.2 | 59        |
| 69 | Preparation of spherical activated carbon with hierarchical porous texture. Journal of Materials<br>Science, 2009, 44, 4750-4753.                                                              | 1.7 | 12        |
| 70 | Comparison of Mercury Retention by Fly Ashes Using Different Experimental Devices. Industrial &<br>Engineering Chemistry Research, 2009, 48, 10702-10707.                                      | 1.8 | 1         |
| 71 | Biomedical and Forensic Applications of Combined Catalytic Hydrogenation-Stable Isotope Ratio<br>Analysis. Analytical Chemistry Insights, 2007, 2, 117739010700200.                            | 2.7 | 4         |
| 72 | An investigation of Cu2+ and Fe2+ ions as active materials for electrochemical redox supercapacitors.<br>Journal of Electroanalytical Chemistry, 2007, 611, 43-50.                             | 1.9 | 83        |

| #  | Article                                                                                                                                                                                                                                                         | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Biomedical and forensic applications of combined catalytic hydrogenation-stable isotope ratio analysis. Analytical Chemistry Insights, 2007, 2, 37-42.                                                                                                          | 2.7 | 3         |
| 74 | Application of 1-ethyl-3-methylimidazolium thiocyanate to the electrolyte of electrochemical double layer capacitors. Journal of Power Sources, 2006, 162, 1444-1450.                                                                                           | 4.0 | 63        |
| 75 | Evaluation of errors associated with δ13C analysis of lignin-derived TMAH thermochemolysis products<br>by gas chromatography–combustion–isotope ratio mass spectrometry. Journal of Analytical and<br>Applied Pyrolysis, 2006, 76, 88-95.                       | 2.6 | 4         |
| 76 | Hydropyrolysis: A new technique for the analysis of macromolecular material in meteorites.<br>Planetary and Space Science, 2005, 53, 1280-1286.                                                                                                                 | 0.9 | 27        |
| 77 | Hydropyrolysis as a preparative method for the compound-specific carbon isotope analysis of fatty acids. Rapid Communications in Mass Spectrometry, 2005, 19, 323-325.                                                                                          | 0.7 | 18        |
| 78 | Hydropyrolysis of steroids: a preparative step for compound-specific carbon isotope ratio analysis.<br>Rapid Communications in Mass Spectrometry, 2005, 19, 3339-3342.                                                                                          | 0.7 | 12        |
| 79 | Use of Nitrogen Stable Isotope Analysis To Understand Char Nitrogen Evolution during the<br>Fluidized-Bed Co-combustion of Coal and Sewage Sludge. Energy & Fuels, 2005, 19, 485-488.                                                                           | 2.5 | 7         |
| 80 | Resolving coal and petroleum-derived polycyclic aromatic hydrocarbons (PAHs) in some contaminated<br>land samples using compound-specific stable carbon isotope ratio measurements in conjunction with<br>molecular fingerprintsa~†. Fuel, 2003, 82, 2017-2023. | 3.4 | 33        |
| 81 | Use of compound-specificδ13C andδD stable isotope measurements as an aid in the source apportionment<br>of polyaromatic hydrocarbons. Rapid Communications in Mass Spectrometry, 2003, 17, 2611-2613.                                                           | 0.7 | 40        |
| 82 | Source apportionment of polycyclic aromatic hydrocarbons in a coastal lagoon by molecular and isotopic characterisation. Marine Chemistry, 2003, 84, 123-135.                                                                                                   | 0.9 | 49        |
| 83 | Sourcing of Fossil Fuel-Derived PAH in the Environment. Polycyclic Aromatic Compounds, 2000, 20, 97-109.                                                                                                                                                        | 1.4 | 25        |
| 84 | Use of Compound-Specific Stable Isotope Analysis to Source Anthropogenic Natural Gas-Derived<br>Polycyclic Aromatic Hydrocarbons in a Lagoon Sediment. Environmental Science & Technology,<br>2000, 34, 4684-4686.                                              | 4.6 | 61        |
| 85 | Î13C values of coal-derived PAHs from different processes and their application to source apportionment. Organic Geochemistry, 1999, 30, 881-889.                                                                                                               | 0.9 | 82        |
| 86 | Structural Characteristics of Coal Surface and Coal Slurryability. Coal Science and Technology, 1995, 24, 1589-1592.                                                                                                                                            | 0.0 | 1         |
| 87 | Effect of mineral matters on the properties of coal water slurry. Coal Science and Technology, 1995, 24, 1593-1596.                                                                                                                                             | 0.0 | 4         |
| 88 | Study on the evolution of internal and external water of lignite during microwave drying and the moisture reabsorption characteristics of dried lignite. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-18.                    | 1.2 | 3         |
| 89 | Microwave-induced high-energy sites and targeted energy transition promising for efficient energy deployment. Frontiers in Energy, 0, , 1.                                                                                                                      | 1.2 | 2         |