Bruno Frka-Petesic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Selfâ€Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance. Advanced Materials, 2018, 30, e1704477.	11.1	363
2	Hierarchical Self-Assembly of Cellulose Nanocrystals in a Confined Geometry. ACS Nano, 2016, 10, 8443-8449.	7.3	161
3	Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets. Advanced Materials, 2017, 29, 1701469.	11.1	159
4	Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments. Nature Materials, 2022, 21, 352-358.	13.3	129
5	Dynamically Controlled Iridescence of Cholesteric Cellulose Nanocrystal Suspensions Using Electric Fields. Advanced Materials, 2017, 29, 1606208.	11.1	126
6	Electrostatic Coâ€Assembly of Iron Oxide Nanoparticles and Polymers: Towards the Generation of Highly Persistent Superparamagnetic Nanorods. Advanced Materials, 2008, 20, 3877-3881.	11.1	97
7	Biocompatible and Sustainable Optical Strain Sensors for Largeâ€Area Applications. Advanced Optical Materials, 2016, 4, 1950-1954.	3.6	94
8	First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals. Europhysics Letters, 2014, 107, 28006.	0.7	93
9	Negative Diamagnetic Anisotropy and Birefringence of Cellulose Nanocrystals. Macromolecules, 2015, 48, 8844-8857.	2.2	89
10	Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays. Advanced Functional Materials, 2019, 29, 1804531.	7.8	87
11	Shape Memory Cellulose-Based Photonic Reflectors. ACS Applied Materials & Interfaces, 2016, 8, 31935-31940.	4.0	68
12	Visual Appearance of Chiral Nematic Celluloseâ€Based Photonic Films: Angular and Polarization Independent Color Response with a Twist. Advanced Materials, 2019, 31, e1905151.	11.1	67
13	So much more than paper. Nature Photonics, 2019, 13, 365-367.	15.6	64
14	Chiral self-assembly of cellulose nanocrystals is driven by crystallite bundles. Nature Communications, 2022, 13, 2657.	5.8	60
15	Controlling the Self-Assembly Behavior of Aqueous Chitin Nanocrystal Suspensions. Biomacromolecules, 2019, 20, 2830-2838.	2.6	48
16	Dynamics of paramagnetic nanostructured rods under rotating field. Journal of Magnetism and Magnetic Materials, 2011, 323, 1309-1313.	1.0	44
17	Angular optical response of cellulose nanocrystal films explained by the distortion of the arrested suspension upon drying. Physical Review Materials, 2019, 3, .	0.9	43
18	Retrieving the Coassembly Pathway of Composite Cellulose Nanocrystal Photonic Films from their Angular Optical Response. Advanced Materials, 2020, 32, e1906889.	11.1	40

Bruno Frka-Petesic

#	Article	IF	CITATIONS
19	Cellulose photonic pigments. Nature Communications, 2022, 13, .	5.8	38
20	Universal scattering behavior of coassembled nanoparticle-polymer clusters. Physical Review E, 2008, 78, 040401.	0.8	29
21	Aggregation of Antibody Drug Conjugates at Room Temperature: SAXS and Light Scattering Evidence for Colloidal Instability of a Specific Subpopulation. Langmuir, 2016, 32, 4848-4861.	1.6	24
22	Hyperspectral Imaging of Photonic Cellulose Nanocrystal Films: Structure of Local Defects and Implications for Self-Assembly Pathways. ACS Nano, 2020, 14, 15361-15373.	7.3	24
23	Cellulose Nanocrystal-Templated Tin Dioxide Thin Films for Gas Sensing. ACS Applied Materials & Interfaces, 2020, 12, 12639-12647.	4.0	19
24	Revealing the Structural Coloration of Selfâ€Assembled Chitin Nanocrystal Films. Advanced Materials, 2022, 34, .	11.1	19
25	Modeling the cholesteric pitch of apolar cellulose nanocrystal suspensions using a chiral hard-bundle model. Journal of Chemical Physics, 2022, 156, 014904.	1.2	17
26	Small-Angle Neutron Scattering Reveals the Structural Details of Thermosensitive Polymer-Grafted Cellulose Nanocrystal Suspensions. Langmuir, 2020, 36, 8511-8519.	1.6	15
27	Coâ€Assembly of Cellulose Nanocrystals and Silk Fibroin into Photonic Cholesteric Films. Advanced Sustainable Systems, 2021, 5, 2000272.	2.7	14
28	Incorporation of magnetic nanoparticles into lamellar polystyrene-b-poly(n-butyl methacrylate) diblock copolymer films: Influence of the chain end-groups on nanostructuration. Polymer, 2010, 51, 4673-4685.	1.8	13
29	Stabilization and controlled association of superparamagnetic nanoparticles using block copolymers. Journal of Magnetism and Magnetic Materials, 2009, 321, 667-670.	1.0	12
30	Reorientation kinetics of superparamagnetic nanostructured rods. Journal of Physics Condensed Matter, 2008, 20, 494216.	0.7	9
31	Effect of thermal treatments on chiral nematic cellulose nanocrystal films. Carbohydrate Polymers, 2021, 272, 118404.	5.1	7
32	Neutron Reflectivity on Polymer Multilayers Doped with Magnetic Nanoparticles. Solid State Phenomena, 2009, 152-153, 194-197.	0.3	1
33	Orientational behavior of an assembly of superparmagnetic rods. Physics Procedia, 2010, 9, 15-19.	1.2	1