
Jun Hyuk Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12189079/publications.pdf Version: 2024-02-01

IUN HVUR CHANC

#	Article	IF	CITATIONS
1	Interface polarization in heterovalent core–shell nanocrystals. Nature Materials, 2022, 21, 246-252.	27.5	52
2	Sample Concentration Affects Optical Gain Results in Colloidal Nanomaterials: Circumventing the Distortions by Below Band Gap Excitation. ACS Photonics, 2022, 9, 156-162.	6.6	3
3	Pushing the Band Gap Envelope of Quasi-Type II Heterostructured Nanocrystals to Blue: ZnSe/ZnSe _{1- <i>X</i>} Te <i> _X </i> /ZnSe Spherical Quantum Wells. Energy Material Advances, 2021, 2021, .	11.0	19
4	Surface Polarity-Insensitive Organosilicasome-Based Clustering of Nanoparticles with Intragap Distance Tunability. Chemistry of Materials, 2021, 33, 5257-5267.	6.7	7
5	Steering Interface Dipoles for Bright and Efficient All-Inorganic Quantum Dot Based Light-Emitting Diodes. ACS Nano, 2021, 15, 20332-20340.	14.6	18
6	III–V colloidal nanocrystals: control of covalent surfaces. Chemical Science, 2020, 11, 913-922.	7.4	77
7	Efficient Optical Gain in Spherical Quantum Wells Enabled by Engineering Biexciton Interactions. ACS Photonics, 2020, 7, 2252-2264.	6.6	20
8	Tailoring the Electronic Landscape of Quantum Dot Light-Emitting Diodes for High Brightness and Stable Operation. ACS Nano, 2020, 14, 17496-17504.	14.6	33
9	Direct Photolithographic Patterning of Colloidal Quantum Dots Enabled by UV-Crosslinkable and Hole-Transporting Polymer Ligands. ACS Applied Materials & Interfaces, 2020, 12, 42153-42160.	8.0	38
10	Simple Yet Effective Method to Determine Multiphoton Absorption Cross Section of Colloidal Semiconductor Nanocrystals. ACS Photonics, 2020, 7, 1806-1812.	6.6	20
11	High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nature Communications, 2020, 11, 2874.	12.8	114
12	Chemically resistant and thermally stable quantum dots prepared by shell encapsulation with cross-linkable block copolymer ligands. NPG Asia Materials, 2020, 12, .	7.9	36
13	"Positive Incentive―Approach To Enhance the Operational Stability of Quantum Dot-Based Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 40252-40259.	8.0	20
14	Design Principle for Bright, Robust, and Color-Pure InP/ZnSe <i>_x</i> S _{1–<i>x</i>} /ZnS Heterostructures. Chemistry of Materials, 2019, 31, 3476-3484.	6.7	112
15	Unraveling the Origin of Operational Instability of Quantum Dot Based Light-Emitting Diodes. ACS Nano, 2018, 12, 10231-10239.	14.6	123
16	Ligand-Asymmetric Janus Quantum Dots for Efficient Blue-Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 22453-22459.	8.0	30
17	Interfacial engineering of core/shell heterostructured nanocrystal quantum dots for light-emitting applications. Journal of Information Display, 2017, 18, 57-65.	4.0	30
18	Multifunctional Dendrimer Ligands for High-Efficiency, Solution-Processed Quantum Dot Light-Emitting Diodes. ACS Nano, 2017, 11, 684-692.	14.6	70

#	Article	IF	CITATIONS
19	Colloidal Spherical Quantum Wells with Near-Unity Photoluminescence Quantum Yield and Suppressed Blinking. ACS Nano, 2016, 10, 9297-9305.	14.6	119
20	The Role of Emission Layer Morphology on the Enhanced Performance of Lightâ€Emitting Diodes Based on Quantum Dotâ€Semiconducting Polymer Hybrids. Advanced Materials Interfaces, 2016, 3, 1600279.	3.7	33
21	Side-chain conjugated polymers for use in the active layers of hybrid semiconducting polymer/quantum dot light emitting diodes. Polymer Chemistry, 2016, 7, 101-112.	3.9	24