Artur Rozanski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1218829/publications.pdf

Version: 2024-02-01

331670 265206 1,727 43 21 42 h-index citations g-index papers 43 43 43 1903 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Confined Crystallization of Polyethylene Oxide in Nanolayer Assemblies. Science, 2009, 323, 757-760.	12.6	334
2	Cavitation during deformation of semicrystalline polymers. Progress in Polymer Science, 2014, 39, 921-958.	24.7	254
3	Fully Isohexide-Based Polyesters: Synthesis, Characterization, and Structure–Properties Relations. Macromolecules, 2013, 46, 384-394.	4.8	97
4	Plastic yielding of semicrystalline polymers affected by amorphous phase. International Journal of Plasticity, 2013, 41, 14-29.	8.8	86
5	Semicrystalline Polyesters Based on a Novel Renewable Building Block. Macromolecules, 2012, 45, 5069-5080.	4.8	78
6	Low density polyethylene–montmorillonite nanocomposites for film blowing. European Polymer Journal, 2008, 44, 270-286.	5.4	68
7	Controlling Cavitation of Semicrystalline Polymers during Tensile Drawing. Macromolecules, 2011, 44, 7273-7287.	4.8	67
8	Forced assembly by multilayer coextrusion to create oriented graphene reinforced polymer nanocomposites. Polymer, 2014, 55, 248-257.	3.8	65
9	Effect of blow moulding ratio on barrier properties of polylactide nanocomposite films. Polymer Testing, 2010, 29, 251-257.	4.8	60
10	Crystalline Lamellae Fragmentation during Drawing of Polypropylene. Macromolecules, 2015, 48, 5310-5322.	4.8	47
11	An Investigation of Polyamides Based on Isoidide-2,5-dimethyleneamine as a Green Rigid Building Block with Enhanced Reactivity. Macromolecules, 2012, 45, 9333-9346.	4.8	43
12	Topological behavior mimicking ethylene–hexene copolymers using branched lactones and macrolactones. Polymer Chemistry, 2014, 5, 3306-3310.	3.9	42
13	Synthetic Principles Determining Local Organization of Copolyesters Prepared from Lactones and Macrolactones. Macromolecules, 2015, 48, 502-510.	4.8	36
14	Cavitation during Drawing of Crystalline Polymers. Macromolecular Symposia, 2010, 298, 1-9.	0.7	35
15	Structure and Molecular Dynamics in Renewable Polyamides from Dideoxy–Diamino Isohexide. Macromolecules, 2012, 45, 5653-5666.	4.8	33
16	Thermovision studies of plastic deformation and cavitation in polypropylene. Mechanics of Materials, 2013, 67, 104-118.	3.2	32
17	Morphology, thermal and mechanical properties of polypropylene/SiO2 nanocomposites obtained by reactive blending. Journal of Polymer Research, 2016, 23, 1.	2.4	28
18	Physical state of the amorphous phase of polypropylene-influence on free volume and cavitation phenomenon. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 531-543.	2.1	28

#	Article	lF	CITATIONS
19	The Modulus of the Amorphous Phase of Semicrystalline Polymers. Macromolecules, 2021, 54, 9113-9123.	4.8	27
20	Morphology and properties alterations in cavitating and non-cavitating high density polyethylene. Polymer, 2016, 103, 353-364.	3.8	25
21	Physical state of the amorphous phase of polypropylene-influence on thermo-mechanical properties. Polymer, 2015, 70, 127-138.	3.8	21
22	The influence of cavitation phenomenon on selected properties and mechanisms activated during tensile deformation of polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1853-1868.	2.1	18
23	DSC/SAXS analysis of the thickness of lamellae of semicrystalline polymers-restrictions in the case of materials with swollen amorphous phase. Polymer Testing, 2018, 65, 189-196.	4.8	16
24	Positron Annihilation Lifetime Spectroscopic Analysis of Plastic Deformation of High-Density Polyethylene. Macromolecules, 2021, 54, 9649-9662.	4.8	16
25	Effects of heat exposure on the properties and structure of aerogels for protective clothing applications. Microporous and Mesoporous Materials, 2019, 285, 43-55.	4.4	15
26	Ring-banded spherulites in polylactide and its blends. Polymer Testing, 2021, 100, 107230.	4.8	15
27	Study on the process of preparation of polypropylene nanocomposite with montmorillonite. Polimery, 2006, 51, 374-381.	0.7	15
28	Influence of non-polymeric substances localized in the amorphous phase on selected properties of semicrystalline polymers. European Polymer Journal, 2015, 69, 186-200.	5.4	13
29	Modification of amorphous phase of semicrystalline polymers. Polimery, 2012, 57, 433-440.	0.7	13
30	Photosensitive nanocapsules for use in imaging from poly(styrene-co-divinylbenzene) cross-linked with coumarin derivatives. Colloids and Surfaces B: Biointerfaces, 2013, 111, 571-578.	5.0	12
31	Crystallization kinetics of polymer fibrous nanocomposites. European Polymer Journal, 2016, 83, 181-201.	5.4	11
32	Characterization of clay platelet orientation in polylactide–montmorillonite nanocomposite films by X-ray pole figures. European Polymer Journal, 2014, 61, 274-284.	5.4	10
33	Plasticization of Polylactide after Solidification: An Effectiveness and Utilization for Correct Interpretation of Thermal Properties. Polymers, 2020, 12, 561.	4.5	10
34	Chlorambucil labelled with the phenosafranin scaffold as a new chemotherapeutic for imaging and cancer treatment. Colloids and Surfaces B: Biointerfaces, 2017, 159, 820-828.	5.0	9
35	Preparation of Well-Compatibilized PP/PC Blends and Foams Thereof. ACS Applied Polymer Materials, 2021, 3, 5509-5516.	4.4	9
36	Cavitation in high density polyethylene/Al2O3 nanocomposites. Composites Science and Technology, 2020, 199, 108323.	7.8	8

3

#	Article	IF	CITATIONS
37	Homodimerization driven self-assembly of glycoluril molecular clips with covalently immobilized poly ($\hat{l}\mu$ -caprolactone). Soft Matter, 2018, 14, 7945-7949.	2.7	6
38	Synthesis of isotactic polypropylene-block-polystyrene block copolymers as compatibilizers for isotactic polypropylene/polyphenylene oxide blends. Polymer, 2018, 147, 121-132.	3.8	6
39	Structural and magnetic properties of Finemet doped with Ta. Journal of Alloys and Compounds, 2010, 491, 495-498.	5.5	5
40	Miscible/partiallyâ€miscible blends of polypropyleneâ€"the mechanisms responsible for the decrease of yield stress. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1203-1214.	2.1	5
41	Supramolecular interactions involving fluoroaryl groups in hybrid blends of polylactide and ladder polysilsesquioxanes. Polymer Testing, 2021, 94, 107033.	4.8	5
42	Effects of blow molding ratio on mechanical properties of polylactide nanocomposite films. Polimery, 2010, 55, 869-876.	0.7	4
43	Thermostable Fluorescent Capsules with the Crossâ€Linked Heterocyclic Polymer Shell from Poly(pyrroleâ€phenosafranin). Macromolecular Chemistry and Physics, 2021, 222, 2000396.	2.2	0