
## **B Shane Underwood**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12184782/publications.pdf Version: 2024-02-01



R SHANE HNDERWOOD

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Improved calculation method of damage parameter in viscoelastic continuum damage model.<br>International Journal of Pavement Engineering, 2010, 11, 459-476.                                         | 2.2 | 170       |
| 2  | Simplified Viscoelastic Continuum Damage Model as Platform for Asphalt Concrete Fatigue Analysis.<br>Transportation Research Record, 2012, 2296, 36-45.                                              | 1.0 | 146       |
| 3  | Transportation resilience to climate change and extreme weather events – Beyond risk and robustness. Transport Policy, 2019, 74, 174-186.                                                            | 3.4 | 127       |
| 4  | Increased costs to US pavement infrastructure from future temperature rise. Nature Climate Change, 2017, 7, 704-707.                                                                                 | 8.1 | 103       |
| 5  | Healing characteristics of asphalt binder. Construction and Building Materials, 2012, 27, 570-577.                                                                                                   | 3.2 | 100       |
| 6  | Experimental investigation into the multiscale behaviour of asphalt concrete. International Journal of Pavement Engineering, 2011, 12, 357-370.                                                      | 2.2 | 85        |
| 7  | Fail-safe and safe-to-fail adaptation: decision-making for urban flooding under climate change.<br>Climatic Change, 2017, 145, 397-412.                                                              | 1.7 | 85        |
| 8  | Microstructural investigation of asphalt concrete for performing multiscale experimental studies.<br>International Journal of Pavement Engineering, 2013, 14, 498-516.                               | 2.2 | 83        |
| 9  | Effects of Oxidative Aging on Asphalt Mixture Properties. Transportation Research Record, 2012, 2296,<br>77-85.                                                                                      | 1.0 | 78        |
| 10 | Application of Artificial Neural Networks for Estimating Dynamic Modulus of Asphalt Concrete.<br>Transportation Research Record, 2009, 2127, 173-186.                                                | 1.0 | 70        |
| 11 | Effect of volumetric factors on the mechanical behavior of asphalt fine aggregate matrix and the relationship to asphalt mixture properties. Construction and Building Materials, 2013, 49, 672-681. | 3.2 | 70        |
| 12 | Impact of climate change on pavement structural performance in the United States. Transportation<br>Research, Part D: Transport and Environment, 2017, 57, 172-184.                                  | 3.2 | 70        |
| 13 | A continuum damage model for asphalt cement and asphalt mastic fatigue. International Journal of<br>Fatigue, 2016, 82, 387-401.                                                                      | 2.8 | 67        |
| 14 | A four phase micro-mechanical model for asphalt mastic modulus. Mechanics of Materials, 2014, 75, 13-33.                                                                                             | 1.7 | 62        |
| 15 | Keeping infrastructure reliable under climate uncertainty. Nature Climate Change, 2020, 10, 488-490.                                                                                                 | 8.1 | 59        |
| 16 | Application of viscoelastic continuum damage model based finite element analysis to predict the fatigue performance of asphalt pavements. KSCE Journal of Civil Engineering, 2008, 12, 109-120.      | 0.9 | 51        |
| 17 | Autonomous Vehicles. Transportation Research Record, 2017, 2640, 21-28.                                                                                                                              | 1.0 | 51        |
| 18 | Interpreting Stress Sensitivity in the Multiple Stress Creep and Recovery Test. Journal of Materials in<br>Civil Engineering, 2018, 30, .                                                            | 1.3 | 39        |

B SHANE UNDERWOOD

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effects of aging on asphalt mixture and pavement performance. Construction and Building Materials, 2020, 258, 120309.                                                                                               | 3.2 | 36        |
| 20 | Nonlinear viscoelastic analysis of asphalt cement and asphalt mastics. International Journal of Pavement Engineering, 2015, 16, 510-529.                                                                            | 2.2 | 35        |
| 21 | Infrastructure resilience to navigate increasingly uncertain and complex conditions in the Anthropocene. Npj Urban Sustainability, 2021, 1, .                                                                       | 3.7 | 35        |
| 22 | Time-Temperature Superposition for HMA with Growing Damage and Permanent Strain in Confined Tension and Compression. Journal of Materials in Civil Engineering, 2010, 22, 415-422.                                  | 1.3 | 33        |
| 23 | Low-temperature performance grade characterisation of asphalt binder using the dynamic shear rheometer. International Journal of Pavement Engineering, 2022, 23, 811-823.                                           | 2.2 | 32        |
| 24 | Effect of Synthetic Fiber State on Mechanical Performance of Fiber Reinforced Asphalt Concrete.<br>Transportation Research Record, 2018, 2672, 42-51.                                                               | 1.0 | 31        |
| 25 | Testing and Modeling of Fine Aggregate Matrix and Its Relationship to Asphalt Concrete Mix.<br>Transportation Research Record, 2015, 2507, 120-127.                                                                 | 1.0 | 30        |
| 26 | Fatigue and healing performance assessment of asphalt binder from rheological and chemical characteristics. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.                                       | 1.3 | 30        |
| 27 | Comparison of conventional, polymer, and rubber asphalt mixtures using viscoelastic continuum damage model. Road Materials and Pavement Design, 2014, 15, 588-605.                                                  | 2.0 | 25        |
| 28 | Experimental Investigations of the Viscoelastic and Damage Behaviors of Hot-Mix Asphalt in Compression. Journal of Materials in Civil Engineering, 2011, 23, 459-466.                                               | 1.3 | 24        |
| 29 | Effects of the International Roughness Index and Rut Depth on Crash Rates. Transportation Research Record, 2018, 2672, 418-429.                                                                                     | 1.0 | 24        |
| 30 | Past and Present Design Practices and Uncertainty in Climate Projections are Challenges for<br>Designing Infrastructure to Future Conditions. Journal of Infrastructure Systems, 2020, 26, .                        | 1.0 | 24        |
| 31 | Review of the Superpave performance grading system and recent developments in the performance-based test methods for asphalt binder characterization. Construction and Building Materials, 2022, 319, 126063.       | 3.2 | 24        |
| 32 | Microstructural Association Model for Upscaling Prediction of Asphalt Concrete Dynamic Modulus.<br>Journal of Materials in Civil Engineering, 2013, 25, 1153-1161.                                                  | 1.3 | 21        |
| 33 | Fatigue Performance Prediction of Asphalt Composites Subjected to Cyclic Loading with Intermittent<br>Rest Periods. Transportation Research Record, 2016, 2576, 72-82.                                              | 1.0 | 18        |
| 34 | Micromechanical shear modulus modeling of activated crumb rubber modified asphalt cements.<br>Construction and Building Materials, 2017, 150, 56-65.                                                                | 3.2 | 17        |
| 35 | Uncertainty Quantification of Simplified Viscoelastic Continuum Damage Fatigue Model using the<br>Bayesian Inference-Based Markov Chain Monte Carlo Method. Transportation Research Record, 2020,<br>2674, 247-260. | 1.0 | 17        |
| 36 | Reduced Testing Protocol for Measuring the Confined Dynamic Modulus of Asphalt Mixtures.<br>Transportation Research Record, 2011, 2210, 20-29.                                                                      | 1.0 | 16        |

B SHANE UNDERWOOD

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Comprehensive Evaluation of Small Strain Viscoelastic Behavior of Asphalt Concrete. Journal of Testing and Evaluation, 2012, 40, 622-632.                                                          | 0.4 | 16        |
| 38 | Effect of MSCR Percent Recovery on Performance of Polymer Modified Asphalt Mixtures.<br>Transportation Research Record, 2019, 2673, 308-319.                                                       | 1.0 | 15        |
| 39 | Relationship between Asphalt Binder Parameters and Asphalt Mixture Rutting. Transportation Research Record, 2019, 2673, 431-446.                                                                   | 1.0 | 14        |
| 40 | Nonlinear Viscoelastic Behavior of Asphalt Concrete and Its Implication for Fatigue Modeling.<br>Transportation Research Record, 2013, 2373, 100-108.                                              | 1.0 | 13        |
| 41 | Characterization of Microdamage Healing in Asphalt Concrete with a Smeared Continuum Damage Approach. Transportation Research Record, 2014, 2447, 126-135.                                         | 1.0 | 13        |
| 42 | Molecular weight distribution of asphalt binders from Laser Desorption Mass Spectroscopy (LDMS) technique and its relationship to linear viscoelastic relaxation spectra. Fuel, 2020, 262, 116444. | 3.4 | 13        |
| 43 | Reliability Analysis of Fatigue Life Prediction from the Viscoelastic Continuum Damage Model.<br>Transportation Research Record, 2016, 2576, 91-99.                                                | 1.0 | 12        |
| 44 | A method to select general circulation models for pavement performance evaluation. International<br>Journal of Pavement Engineering, 2021, 22, 134-146.                                            | 2.2 | 12        |
| 45 | Investigation of Aging in Hydrated Lime and Portland Cement Modified Asphalt Concrete at Multiple<br>Length Scales. Journal of Materials in Civil Engineering, 2016, 28, .                         | 1.3 | 11        |
| 46 | Simulation of the asphalt concrete stiffness degradation using simplified viscoelastic continuum<br>damage model. International Journal of Fatigue, 2020, 140, 105850.                             | 2.8 | 11        |
| 47 | Comparison of Fatigue Damage, Healing, and Endurance Limit with Beam and Uniaxial Fatigue Tests.<br>Transportation Research Record, 2014, 2447, 32-41.                                             | 1.0 | 10        |
| 48 | Effect of Loading Waveform Pattern and Rest Period on Fatigue Life of Asphalt Concrete Using<br>Viscoelastic Continuum Damage Model. Transportation Research Record, 2018, 2672, 451-461.          | 1.0 | 10        |
| 49 | Identifying Indicators for Fatigue Cracking in Hot-Mix Asphalt Pavements Using Viscoelastic<br>Continuum Damage Principles. Transportation Research Record, 2016, 2576, 28-39.                     | 1.0 | 9         |
| 50 | Nonlinear Viscoelastic Response of Crumb Rubber Modified Asphalt Binder Under Large Strains.<br>Transportation Research Record, 2020, 2674, 139-149.                                               | 1.0 | 9         |
| 51 | Rutting performance prediction using index-volumetrics relationships with stress sweep rutting test and Hamburg wheel-track test. Construction and Building Materials, 2021, 295, 123664.          | 3.2 | 9         |
| 52 | Experimental Study for Crowdsourced Ride Quality Index Estimation Using Smartphones. Journal of<br>Transportation Engineering Part B: Pavements, 2020, 146, .                                      | 0.8 | 8         |
| 53 | Statistical Validation of Crowdsourced Pavement Ride Quality Measurements from Smartphones.<br>Journal of Computing in Civil Engineering, 2020, 34, .                                              | 2.5 | 8         |
| 54 | Correlation of asphalt binder linear viscoelasticity (LVE) parameters and the ranking consistency related to fatigue cracking resistance. Construction and Building Materials, 2022, 322, 126450.  | 3.2 | 8         |

B SHANE UNDERWOOD

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Evaluation of the sensitivity of asphalt concrete modulus to binder oxidation with a multiple length scale study. Construction and Building Materials, 2017, 152, 954-963.                                                                | 3.2 | 7         |
| 56 | Development of a Test Protocol to Measure Uniaxial Fatigue Damage and Healing. Transportation Research Record, 2016, 2576, 10-18.                                                                                                         | 1.0 | 6         |
| 57 | Use of Fine Aggregate Matrix Experimental Data in Improving Reliability of Fatigue Life Prediction of Asphalt Concrete: Sensitivity of This Approach to Variation in Input Parameters. Transportation Research Record, 2017, 2631, 65-73. | 1.0 | 6         |
| 58 | Strain-Level Determination Procedure for Small-Specimen Cyclic Fatigue Testing in the Asphalt<br>Mixture Performance Tester. Transportation Research Record, 2019, 2673, 824-835.                                                         | 1.0 | 5         |
| 59 | Predictive Framework for Modeling Changes in Asphalt Mixture Moduli with Oxidative Aging.<br>Transportation Research Record, 2020, 2674, 79-93.                                                                                           | 1.0 | 5         |
| 60 | Effect of laboratory oxidative aging on dynamic shear rheometer measures of asphalt binder fatigue cracking resistance. Construction and Building Materials, 2022, 337, 127566.                                                           | 3.2 | 5         |
| 61 | Estimation of Asphalt Concrete Modulus Using the Ultrasonic Pulse Velocity Test. Journal of Transportation Engineering Part B: Pavements, 2018, 144, 04018008.                                                                            | 0.8 | 4         |
| 62 | Top-Down Cracking Prediction Tool for Hot Mix Asphalt Pavements. RILEM Bookseries, 2012, , 465-474.                                                                                                                                       | 0.2 | 4         |
| 63 | Exploring indicators for fatigue cracking in hot mix asphalt pavements using simplified-viscoelastic continuum damage theory. Road Materials and Pavement Design, 2018, 19, 536-545.                                                      | 2.0 | 3         |
| 64 | Implementation of the AASHTO M 332 Specification: A Case Study. Transportation Research Record, 2020, 2674, 959-971.                                                                                                                      | 1.0 | 3         |
| 65 | Use of Resampling Method to Construct Variance Index and Repeatability Limit of Damage Characteristic Curve. Transportation Research Record, 2021, 2675, 194-207.                                                                         | 1.0 | 3         |
| 66 | COVID-19, Uncertainty, and the Need for Resilience-Based Thinking in Pavement Engineering. Journal of<br>Transportation Engineering Part B: Pavements, 2021, 147, 02520001.                                                               | 0.8 | 2         |
| 67 | Developing an Indicator for Fatigue Cracking in Hot Mix Asphalt Pavements Using Viscoelastic Continuum Damage Principles. RILEM Bookseries, 2016, , 381-387.                                                                              | 0.2 | 2         |
| 68 | Using Limited Purchase Specification Tests to Perform Full Linear Viscoelastic Characterization of<br>Asphalt Binder. Journal of Testing and Evaluation, 2010, 38, 558-566.                                                               | 0.4 | 2         |
| 69 | Novel Index for Vulnerability Assessment of Flexible Pavement Infrastructure to Temperature Rise:<br>Case Study of Developing Countries. Journal of Infrastructure Systems, 2022, 28, .                                                   | 1.0 | 2         |
| 70 | Cracking performance predictions using index-volumetrics relationships with direct tension cyclic<br>fatigue test and Illinois Flexibility Index Test (I-FIT). Construction and Building Materials, 2021, 315,<br>125631.                 | 3.2 | 1         |
| 71 | Fatigue behaviour of conventional and rubber-modified gap-graded asphalt mixtures using bending and axial fatigue tests. Australian Journal of Civil Engineering, 2021, 19, 195-207.                                                      | 0.6 | 0         |