Jawad Naciri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12183583/publications.pdf

Version: 2024-02-01

35 papers	2,110 citations	18 h-index	414414 32 g-index
35	35	35	2676
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Liquid Crystal Nanoparticle Conjugates for Scavenging Reactive Oxygen Species in Live Cells. Pharmaceuticals, $2022,15,604.$	3.8	4
2	Hybrid Liquid Crystal Nanocarriers for Enhanced Zinc Phthalocyanine-Mediated Photodynamic Therapy. Bioconjugate Chemistry, 2018, 29, 2701-2714.	3.6	14
3	Liquid crystal nanoparticles for delivery of photosensitizers for photodynamic therapy. , 2018, , .		0
4	Targeted Plasma Membrane Delivery of a Hydrophobic Cargo Encapsulated in a Liquid Crystal Nanoparticle Carrier. Journal of Visualized Experiments, 2017, , .	0.3	2
5	Electrically Induced Twist in Smectic Liquid–Crystalline Elastomers. Journal of Physical Chemistry B, 2016, 120, 6368-6372.	2.6	24
6	Membrane-targeting liquid crystal nanoparticles (LCNPs) for drug delivery. , 2016, , .		1
7	Lipid Raft-Mediated Membrane Tethering and Delivery of Hydrophobic Cargos from Liquid Crystal-Based Nanocarriers. Bioconjugate Chemistry, 2016, 27, 982-993.	3.6	14
8	Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials, 2014, 35, 1845-1856.	11.4	207
9	Multifunctional Liquid Crystal Nanoparticles for Intracellular Fluorescent Imaging and Drug Delivery. ACS Nano, 2014, 8, 6986-6997.	14.6	57
10	Liquidâ€Crystalline Nanoâ€optomechanical Actuator. Macromolecular Chemistry and Physics, 2013, 214, 734-741.	2.2	17
11	Hydrodynamic Shaping, Polymerization, and Subsequent Modification of Thiol Click Fibers. ACS Applied Materials & Samp; Interfaces, 2013, 5, 114-119.	8.0	37
12	Rapid and Continuous Hydrodynamically Controlled Fabrication of Biohybrid Microfibers. Advanced Functional Materials, 2013, 23, 698-704.	14.9	52
13	Microfabrication: Rapid and Continuous Hydrodynamically Controlled Fabrication of Biohybrid Microfibers (Adv. Funct. Mater. 6/2013). Advanced Functional Materials, 2013, 23, 697-697.	14.9	2
14	Hydrodynamically directed multiscale assembly of shaped polymer fibers. Soft Matter, 2012, 8, 6656.	2.7	23
15	An Elastomeric Poly(Thiopheneâ€EDOT) Composite with a Dynamically Variable Permeability Towards Organic and Water Vapors. Advanced Functional Materials, 2012, 22, 3116-3127.	14.9	13
16	Enhanced thermomechanical properties of a nematic liquid crystal elastomer doped with gold nanoparticles. Sensors and Actuators A: Physical, 2012, 178, 175-178.	4.1	36
17	Threshold field for switching the de Vries S _A * phase in a low molar mass organosiloxane material. Liquid Crystals, 2010, 37, 1427-1431.	2.2	2
18	Strain analysis of a chiral smectic- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>A</mml:mi></mml:math> elastomer. Physical Review E, 2010, 82, 031705.	2.1	8

#	Article	IF	CITATIONS
19	Spectral Tuning of Organic Nanocolloids by Controlled Molecular Interactions. ACS Nano, 2009, 3, 3214-3220.	14.6	26
20	Role of Surfactant in the Stability of Liquid Crystal-Based Nanocolloids. Langmuir, 2009, 25, 2419-2426.	3.5	18
21	Controlling Chargeâ€Carrier Type in Nanoscale Junctions with Linker Chemistry. Small, 2008, 4, 1143-1147.	10.0	18
22	Molecular Packing in Electroclinic Liquid Crystal Elastomer Films. Chemistry of Materials, 2008, 20, 6130-6139.	6.7	10
23	Anisotropic actuation in electroclinic liquid crystal elastomers. Applied Physics Letters, 2007, 90, 021911.	3.3	84
24	Stacking nematic elastomers for artificial muscle applications. Sensors and Actuators A: Physical, 2007, 133, 500-505.	4.1	48
25	Structure of nematic liquid crystalline elastomers under uniaxial deformation. Physical Review E, 2006, 73, 021701.	2.1	10
26	Tuning the physical properties of a nematic liquid crystal elastomer actuator. Liquid Crystals, 2006, 33, 373-380.	2.2	29
27	Self-Assembly, Characterization, and Chemical Stability of Isocyanide-Bound Molecular Wire Monolayers on Gold and Palladium Surfaces. Langmuir, 2005, 21, 11061-11070.	3.5	73
28	Molecular structure and pretilt control of photodimerized-monolayers (PDML). Journal of Materials Chemistry, 2004, 14, 3468-3473.	6.7	6
29	Charge Transport and Scaling in Molecular Wires. Journal of Physical Chemistry B, 2004, 108, 18124-18128.	2.6	65
30	Sequential Deprotection for Control of Orientation in the Self-Assembly of Asymmetric Molecules for Molecular Electronic Devices. Langmuir, 2004, 20, 1838-1842.	3.5	32
31	Nematic Elastomer Fiber Actuator. Macromolecules, 2003, 36, 8499-8505.	4.8	232
32	Synthesis and characterization of laterally substituted bis(alkoxybenzoyloxy)hydroquinones. Liquid Crystals, 2003, 30, 617-621.	2.2	0
33	Effect of Bond-Length Alternation in Molecular Wires. Journal of the American Chemical Society, 2002, 124, 10654-10655.	13.7	294
34	Liquid Crystal Elastomers with Mechanical Properties of a Muscle. Macromolecules, 2001, 34, 5868-5875.	4.8	627
35	Title is missing!. Journal of Materials Chemistry, 2001, 11, 2992-2995.	6.7	25