G Ali Mansoori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12182858/publications.pdf

Version: 2024-02-01

84 4,073 30 61 papers citations h-index g-index

86 86 86 3953
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Development of dynamic energy storage hub concept: A comprehensive literature review of multi storage systems. Journal of Energy Storage, 2022, 48, 103972.	8.1	16
2	Large-Scale Production/Biosynthesis of Biogenic Nanoparticles. , 2020, , 67-83.		4
3	Chapter 4 Petroleum Waxes. , 2019, , 79-113.		O
4	A novel approach to predict drugs solubility in supercritical solvents for RESS process using various cubic EoS-mixing rule. Journal of Molecular Liquids, 2018, 261, 174-188.	4.9	30
5	A new insight into asphaltenes aggregation onset at molecular level in crude oil (an MD simulation) Tj ETQq1 10	.784314 r 4.2	gBT /Overlo <mark>c</mark>
6	Asphaltene aggregation due to waterflooding (A molecular dynamics study). Journal of Petroleum Science and Engineering, 2018, 170, 177-183.	4.2	45
7	An Introduction to Nanoscience and Nanotechnology. Soil Biology, 2017, , 3-20.	0.8	14
8	Molecular dynamics studies of interaction between asphaltenes and solvents. Journal of Petroleum Science and Engineering, 2017, 156, 118-124.	4.2	88
9	Diamondoids: occurrence in fossil fuels, applications in petroleum exploration and fouling in petroleum production. A review paper. International Journal of Oil, Gas and Coal Technology, 2012, 5, 316.	0.2	28
10	Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Reviews, 2012, 3, 18496.	3.7	392
11	Phase Transition and Self-assembly of Lower Diamondoids and Derivatives Materials Research Society Symposia Proceedings, 2011, 1282, 17.	0.1	1
12	Lateral Pressure Tensor of Confined Fluids in Nanoslit Pores. Micro and Nanosystems, 2011, 3, 311-318.	0.6	4
13	Behavior of confined fluids in nanoslit pores: the normal pressure tensor. Microfluidics and Nanofluidics, 2010, 8, 97-104.	2.2	14
14	Heavy-organic particle deposition from petroleum fluid flow in oil wells and pipelines. Petroleum Science, 2010, 7, 502-508.	4.9	32
15	Structural and optical characterization of folate-conjugated gold-nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1272-1280.	2.7	45
16	Self-Assembly of Diamondoid Molecules and Derivatives (MD Simulations and DFT Calculations). International Journal of Molecular Sciences, 2010, 11, 288-303.	4.1	41
17	A Comparative Study of Two Folate-Conjugated Gold Nanoparticles for Cancer Nanotechnology Applications. Cancers, 2010, 2, 1911-1928.	3.7	133
18	Opto-electronic properties of adamantane and hydrogen-terminated sila- and germa-adamantane: A comparative study. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1151-1156.	2.7	30

#	Article	IF	CITATIONS
19	A unified perspective on the phase behaviour of petroleum fluids. International Journal of Oil, Gas and Coal Technology, 2009, 2, 141.	0.2	63
20	ENVIRONMENTAL APPLICATION OF NANOTECHNOLOGY. Annual Review of Nano Research, 2008, , 439-493.	0.2	62
21	BEHAVIOR OF THE CONFINED HARD-SPHERE FLUID WITHIN NANOSLITS: A FUNDAMENTAL-MEASURE DENSITY-FUNCTIONAL THEORY STUDY. International Journal of Nanoscience, 2008, 07, 245-253.	0.7	26
22	QUANTUM CONDUCTANCE AND ELECTRONIC PROPERTIES OF LOWER DIAMONDOID MOLECULES AND DERIVATIVES. International Journal of Nanoscience, 2008, 07, 63-72.	0.7	20
23	Nanotechnology Solutions for Alzheimer's Disease: Advances in Research Tools, Diagnostic Methods and Therapeutic Agents. Journal of Alzheimer's Disease, 2008, 13, 199-223.	2.6	114
24	Diamondoids in nanotechnology: First-principles simulation of electronic structure and nonlinear optical response in adamantane., 2007,,.		0
25	First-principles simulation of the interaction between adamantane and an atomic-force-microscope tip. Physical Review B, 2007, 75, .	3.2	14
26	Diamondoids as Molecular Building Blocks for Nanotechnology. , 2007, , 44-71.		23
27	Polydispersity of heavy organics in crude oils and their role in oil well fouling. Journal of Petroleum Science and Engineering, 2007, 58, 375-390.	4.2	40
28	Reservoir organic geochemistry: Processes and applications. Journal of Petroleum Science and Engineering, 2007, 58, 341-343.	4.2	4
29	A molecular dynamics study on the role of attractive and repulsive forces in internal energy, internal pressure and structure of dense fluids. Chemical Physics, 2007, 331, 332-338.	1.9	15
30	Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead. World Review of Science, Technology and Sustainable Development, 2007, 4, 226.	0.4	75
31	An accurate expression for radial distribution function of the Lennard-Jones fluid. Chemical Physics, 2005, 310, 11-15.	1.9	44
32	Principles of Nanotechnology. , 2005, , .		123
33	A New Theoretical Approach to the Hydrogen-Bonded Fluids Based on the Conformal Solution Concept. Journal of Physical Chemistry B, 2001, 105, 2820-2825.	2.6	14
34	Application of Integral Equation Joined with the Chain Association Theory to Study Molecular Association in Sub- and Supercritical Water. Journal of Physical Chemistry B, 2001, 105, 9834-9839.	2.6	5
35	An equation of state for property prediction of alcohol–hydrocarbon and water–hydrocarbon systems. Journal of Petroleum Science and Engineering, 2001, 32, 103-114.	4.2	17
36	10 Mixtures of dissimilar molecules. Experimental Thermodynamics, 2000, 5, 359-380.	0.1	1

#	Article	IF	Citations
37	Integral equation study of the residual chemical potential in infiniteâ€dilution supercritical solutions. Canadian Journal of Chemical Engineering, 2000, 78, 1157-1167.	1.7	2
38	Improvement on Lennard-Jones–Devonshire theory for predicting liquid–solid phase transition. Journal of Chemical Physics, 1999, 111, 10236-10241.	3.0	11
39	Hard-sphere mixture excess free energy at infinite size ratio. Journal of Chemical Physics, 1999, 110, 3463-3465.	3.0	16
40	PREDICTION OF MOLAR VOLUMES, VAPOR PRESSURES AND SUPERCRITICAL SOLUBILITIES OF ALKANES BY EQUATIONS OF STATE. Chemical Engineering Communications, 1999, 173, 23-42.	2.6	17
41	Measurement of Activity of Water in Aqueous Poly(ethylene glycol) Solutions (Effect of Excess) Tj ETQq1 1 0.784	1314 rgBT	Qyerlock 10
42	Surface-tension prediction for liquid mixtures. AICHE Journal, 1998, 44, 2324-2332.	3.6	54
43	Structure and property prediction of sub- and supercritical water. Fluid Phase Equilibria, 1998, 150-151, 459-468.	2.5	9
44	PREDICTION OF THE PHASE BEHAVIOR OF ASPHALTENE MICELLE / AROMATIC HYDROCARBON SYSTEMS. Petroleum Science and Technology, 1998, 16, 377-394.	1.5	34
45	Densities of Poly(ethylene glycol) + Water Mixtures in the 298.15â^328.15 K Temperature Range. Journal of Chemical & Chem	1.9	90
46	A Generalized Chemical Associating Theory of Mixtures. Zeitschrift Fur Physikalische Chemie, 1998, 205, 211-240.	2.8	11
47	Supercritical Fluid Extraction for Remediation of Contaminated Soil. ACS Symposium Series, 1997, , 280-298.	0.5	13
48	Modeling of asphaltene and other heavy organic depositions. Journal of Petroleum Science and Engineering, 1997, 17, 101-111.	4.2	279
49	Surface tension prediction for pure fluids. AICHE Journal, 1996, 42, 1425-1433.	3.6	109
50	A singleâ€theory approach to the prediction of solid–liquid and liquid–vapor phase transitions. Journal of Chemical Physics, 1996, 105, 9580-9587.	3.0	12
51	The concentrations of electrolytes in charged cylindrical pores: The hydrostatic hypernetted chain/mean spherical approximation. Journal of Chemical Physics, 1996, 104, 3832-3840.	3.0	14
52	Viscometric Determination of the Onset of Asphaltene Flocculation: A Novel Method. SPE Production and Operations, 1995, 10, 115-118.	0.6	92
53	A simple expression for radial distribution functions of pure fluids and mixtures. Journal of Chemical Physics, 1995, 103, 4672-4677.	3.0	101
54	Asphaltene and Other Heavy-Organic Particle Deposition During Transfer and Production Operations. , $1995, \dots$		27

#	Article	IF	CITATIONS
55	Chapter 8 Asphaltene and other Heavy Organic Depositions. Developments in Petroleum Science, 1994, 40, 179-205.	0.2	7
56	Characterization of Alkanes and Paraffin Waxes for Application as Phase Change Energy Storage Medium. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 1994, 16, 117-128.	0.5	325
57	Modeling and Prevention of Asphaltene and Other Heavy Organic Deposition in Oil Wells. , 1994, , .		13
58	Solubility modeling of solids in supercritical fluids using the Kirkwood-Buff fluctuation integral with the hard-sphere expansion (RISE) theory. Journal of Supercritical Fluids, 1993, 6, 173-180.	3.2	17
59	Fractal nature of asphaltene aggregation. Journal of Petroleum Science and Engineering, 1993, 9, 17-27.	4.2	26
60	A simple relation to predict or to correlate the excess functions of multicomponent mixtures. Fluid Phase Equilibria, 1991, 62, 173-189.	2.5	69
61	Model Calculations of Thermodynamic Mixture Properties from Direct Correlation Integrals. Zeitschrift Fur Physikalische Chemie, 1990, 166, 63-69.	2.8	7
62	A fluctuation solution theory of activity coefficients: phase equilibria in associating molecular solutions. The Journal of Physical Chemistry, 1990, 94, 3148-3152.	2.9	13
63	Bioseparations: Design and Engineering of Partitioning Systems. Nature Biotechnology, 1989, 7, 686-688.	17.5	8
64	Relations Among Concentration Fluctuation Integrals in Mixtures (Theory and Experiments). Zeitschrift Fur Physikalische Chemie, 1989, 162, 27-45.	2.8	14
65	Asphaltene deposition: an economic challenge in heavy petroleum crude utilization and processing. OPEC Review, 1988, 12, 103-113.	0.2	12
66	Asphaltene deposition: a survey of field experiences and research approaches. Journal of Petroleum Science and Engineering, 1988, 1, 229-239.	4.2	327
67	Bioseparation Using Supercritical Fluid Extraction/Retrograde Condensation. Nature Biotechnology, 1988, 6, 393-396.	17.5	15
68	The role of mixing rules and three-body forces in the phase behavior of mixtures: simultaneous VLE and VLLE calculations. Fluid Phase Equilibria, 1988, 41, 43-57.	2.5	13
69	Statistical mechanical test of mhemhs model of the interaction third virial coefficients. Fluid Phase Equilibria, 1988, 43, 205-212.	2.5	3
70	Aggregation and Deposition of Heavy Organics in Petroleum Crudes. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 1988, 10, 109-125.	0.5	157
71	Buried Gas Transmission Pipelines: Temperature Profile Prediction through the Corresponding States Principle. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 1988, 10, 247-252.	0.5	25
72	Superconductors: Past, Present, and Future. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 1988, 10, 159-172.	0.5	1

#	Article	IF	CITATIONS
73	Mean density approximation and hard sphere expansion theory: A review. Fluid Phase Equilibria, 1987, 37, 1-27.	2.5	10
74	Variational theory of mixtures. Fluid Phase Equilibria, 1987, 37, 255-285.	2.5	4
75	Mixing Rules for Cubic Equations of State. ACS Symposium Series, 1986, , 314-330.	0.5	14
76	Density expansion (DEX) mixing rules: Thermodynamic modeling of supercritical extraction. Journal of Chemical Physics, 1985, 82, 406-413.	3.0	36
77	Classical thermodynamic basis of activity coefficients: Predictive and consistency rules for binary and ternary mixtures based on the relation between excess Gibbs free energies of (c)- and (c $\hat{a} \in "$) Tj ETQq1 1 0.7	'8 43. \$4 rgl	3T #Overlock
78	On the Variational Properties of Scott and van der Waals "Oneâ€Fluid" Theories of Mixtures. Journal of Chemical Physics, 1972, 57, 198-199.	3.0	2
79	Statistical thermodynamics of mixtures. A new version for the theory of conformal solution. Journal of the Chemical Society, Faraday Transactions 2, 1972, 68, 320.	1.1	133
80	Variational Approach to the Prediction of Excess Thermodynamic Properties of Binary Liquid Mixtures. IV. Journal of Chemical Physics, 1972, 56, 5335-5339.	3.0	27
81	Inequalities for the Helmholtz Free Energy. Journal of Chemical Physics, 1970, 53, 1618-1619.	3.0	18
82	Variational Approach to the Equilibrium Thermodynamic Properties of Simple Fluid Mixtures. III. Journal of Chemical Physics, 1970, 53, 1931-1936.	3.0	57
83	Perturbation and Variational Approaches to Equilibrium Thermodynamics of Gases, Liquids, and Phase Transitions. Industrial and Engineering Chemistry, 1970, 62, 12-29.	0.5	35
84	Multiobjective operational optimization of energy hubs: Developing a novel dynamic energy storage hub concept using ammonia as storage. International Journal of Energy Research, 0, , .	4.5	1