Gi Dae Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12182719/publications.pdf Version: 2024-02-01

CI DAF PADK

#	Article	IF	CITATIONS
1	Synthesis of <scp>MnSe</scp> @C yolkâ€shell nanospheres via a water vaporâ€assisted strategy for use as anode in sodiumâ€ion batteries. International Journal of Energy Research, 2022, 46, 2500-2511.	4.5	16
2	Metal sulfoselenide solid solution embedded in porous hollow carbon nanospheres as effective anode material for potassium-ion batteries with long cycle life and enhanced rate performance. Chemical Engineering Journal, 2022, 428, 131051.	12.7	18
3	Doubleâ€shell and yolkâ€shell structured <scp>ZnSe</scp> â€carbon nanospheres as anode materials for highâ€performance potassiumâ€ion batteries. International Journal of Energy Research, 2022, 46, 3539-3553.	4.5	8
4	Aerosolâ€assisted synthesis of bimetallic nanoparticleâ€loaded bambooâ€like Nâ€doped carbon nanotubes as an efficient bifunctional oxygen catalyst for Znâ€air batteries. International Journal of Energy Research, 2022, 46, 5215-5225.	4.5	8
5	Novel synthetic strategy for a nanostructured metal hydroxysulfideâ€C and its initial electrochemical investigation as a new anode material for potassiumâ€ion batteries. International Journal of Energy Research, 2022, 46, 6323-6336.	4.5	2
6	Investigating the role of metals loaded on nitrogen-doped carbon-nanotube electrodes in electrodes in electroenzymatic alcohol dehydrogenation. Applied Catalysis B: Environmental, 2022, 307, 121195.	20.2	11
7	Investigation of the potassiumâ€ion storage mechanism of nickel selenide materials and rational design of nickel <scp>selenideâ€C</scp> yolkâ€shell structure for enhancing electrochemical properties. International Journal of Energy Research, 2022, 46, 5800-5810.	4.5	7
8	Morphological and Electrochemical Properties of ZnMn2O4 Nanopowders and Their Aggregated Microspheres Prepared by Simple Spray Drying Process. Nanomaterials, 2022, 12, 680.	4.1	4
9	Electrochemical properties of yolkâ€shell structured cobalt hydroxy chlorideâ€carbon composite as an anode for lithiumâ€ion batteries. International Journal of Energy Research, 2022, 46, 9761-9770.	4.5	3
10	Rational synthesis of uniform yolk–shell Ni–Fe bimetallic sulfide nanoflakes@porous carbon nanospheres as advanced anodes for high-performance potassium-/sodium-ion batteries. Chemical Engineering Journal, 2021, 417, 127963.	12.7	32
11	Recent Advances in Heterostructured Anode Materials with Multiple Anions for Advanced Alkaliâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2003058.	19.5	60
12	Uniquely structured iron hydroxide-carbon nanospheres with yolk-shell and hollow structures and their excellent lithium-ion storage performances. Applied Surface Science, 2021, 542, 148637.	6.1	6
13	Initial investigation of bimetal hydroxysulfide as a new anode material for efficient sodium-ion storage. Chemical Engineering Journal, 2021, 410, 128401.	12.7	6
14	Synthesis of yolkâ€shellâ€structured iron monosulfideâ€carbon microspheres and understanding of their conversion reaction for potassiumâ€ion storage. International Journal of Energy Research, 2021, 45, 14910-14919.	4.5	11
15	Synthesis of threeâ€dimensional Co/ CoO /Nâ€doped carbon nanotube composite for zinc air battery. International Journal of Energy Research, 2021, 45, 16091-16101.	4.5	4
16	Yolkâ€Shellâ€Structured Nanospheres with Goat Pupilâ€Like Sâ€Doped SnSe Yolk and Hollow Carbonâ€Shell Configuration as Anode Material for Sodiumâ€ion Storage. Small Methods, 2021, 5, e2100302.	8.6	17
17	A strategy for fabricating three-dimensional porous architecture comprising metal oxides/CNT as highly active and durable bifunctional oxygen electrocatalysts and their application in rechargeable Zn-air batteries. Chemical Engineering Journal, 2021, 414, 128815.	12.7	13
18	Novel synthesis method of cobalt hydroxycarbonate hydrateâ€reduced graphene oxide composite microspheres for lithiumâ€ion battery anode. International Journal of Energy Research, 2021, 45, 20302.	4.5	1

#	Article	IF	CITATIONS
19	New strategy to synthesize optimal cobalt diselenide@hollow mesoporous carbon nanospheres for highly efficient hydrogen evolution reaction. Chemical Engineering Journal, 2021, 424, 130341.	12.7	20
20	Structural combination of polar hollow microspheres and hierarchical N-doped carbon nanotubes for high-performance Li–S batteries. Nanoscale, 2020, 12, 2142-2153.	5.6	21
21	Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li- ions. Journal of Materials Chemistry A, 2020, 8, 1939-1946.	10.3	34
22	Conversion reaction mechanism of cobalt telluride-carbon composite microspheres synthesized by spray pyrolysis process for K-ion storage. Applied Surface Science, 2020, 529, 147140.	6.1	37
23	Conversion Reaction Mechanism of Ultrafine Bimetallic Coâ€Fe Selenides Embedded in Hollow Mesoporous Carbon Nanospheres and Their Excellent Kâ€ŀon Storage Performance. Small, 2020, 16, e2002345.	10.0	54
24	Amorphous Cobalt Selenite Nanoparticles Decorated on a Graphitic Carbon Hollow Shell for High-Rate and Ultralong Cycle Life Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 17707-17717.	6.7	15
25	Efficient strategy for hollow carbon nanospheres embedded with nickel hydroxide nanocrystals and their excellent lithium-ion storage performances. Scripta Materialia, 2020, 188, 112-117.	5.2	10
26	Conversion Reaction Mechanism for Yolkâ€Shellâ€Structured Iron Tellurideâ€C Nanospheres and Exploration of Their Electrochemical Performance as an Anode Material for Potassiumâ€Ion Batteries. Small Methods, 2020, 4, 2000556.	8.6	38
27	Enhanced Li-ion storage performance of novel tube-in-tube structured nanofibers with hollow metal oxide nanospheres covered with a graphitic carbon layer. Nanoscale, 2020, 12, 8404-8414.	5.6	9
28	Investigation of cobalt hydroxysulfide as a new anode material for Li-ion batteries and its conversion reaction mechanism with Li-ions. Chemical Engineering Journal, 2020, 401, 126121.	12.7	22
29	Lithium ion storage mechanism exploration of copper selenite as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 827, 154309.	5.5	20
30	Electrochemical reaction mechanism of amorphous iron selenite with ultrahigh rate and excellent cyclic stability performance as new anode material for lithium-ion batteries. Chemical Engineering Journal, 2020, 389, 124350.	12.7	42
31	Amorphous iron oxide–selenite composite microspheres with a yolk–shell structure as highly efficient anode materials for lithium-ion batteries. Nanoscale, 2020, 12, 10790-10798.	5.6	26
32	Aerosol-assisted synthesis of porous and hollow carbon-carbon nanotube composite microspheres as sulfur host materials for high-performance Li-S batteries. Applied Surface Science, 2019, 495, 143637.	6.1	21
33	Yolk–shell-structured microspheres composed of N-doped-carbon-coated NiMoO ₄ hollow nanospheres as superior performance anode materials for lithium-ion batteries. Nanoscale, 2019, 11, 631-638.	5.6	41
34	Unique structured microspheres with multishells comprising graphitic carbon-coated Fe ₃ O ₄ hollow nanopowders as anode materials for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2019, 7, 15766-15773.	10.3	61
35	Pitch-derived yolk-shell-structured carbon microspheres as efficient sulfur host materials and their application as cathode material for Li–S batteries. Chemical Engineering Journal, 2019, 373, 382-392.	12.7	41
36	Synthesis Process of CoSeO ₃ Microspheres for Unordinary Liâ€ion Storage Performances and Mechanism of Their Conversion Reaction with Li ions. Small, 2019, 15, e1901320.	10.0	49

#	Article	IF	CITATIONS
37	Pitch-derived carbon coated SnO2–CoO yolk–shell microspheres with excellent long-term cycling and rate performances as anode materials for lithium-ion batteries. Chemical Engineering Journal, 2019, 369, 726-735.	12.7	40
38	Carbon microspheres with micro- and mesopores synthesized via spray pyrolysis for high-energy-density, electrical-double-layer capacitors. Chemical Engineering Journal, 2019, 365, 193-200.	12.7	33
39	Investigation of Binary Metal (Ni, Co) Selenite as Liâ€ŀon Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions. Small, 2019, 15, e1905289.	10.0	51
40	Strategy for synthesizing mesoporous NiO polyhedra with empty nanovoids via oxidation of NiSe polyhedra by nanoscale Kirkendall diffusion and their superior lithium-ion storage performance. Applied Surface Science, 2019, 464, 597-605.	6.1	12
41	Fabrication of bimodal micro-mesoporous amorphous carbon-graphitic carbon-reduced graphene oxide composite microspheres prepared by pilot-scale spray drying and their application in supercapacitors. Carbon, 2019, 144, 591-600.	10.3	24
42	Germanium Nanoparticle-Dispersed Reduced Graphene Oxide Balls Synthesized by Spray Pyrolysis for Li-Ion Battery Anode. Journal of the Korean Ceramic Society, 2019, 56, 65-70.	2.3	9
43	Design and Synthesis of Spherical Multicomponent Aggregates Composed of Core–Shell, Yolk–Shell, and Hollow Nanospheres and Their Lithiumâ€ion Storage Performances. Small, 2018, 14, e1703957.	10.0	25
44	Multiroom-structured multicomponent metal selenide–graphitic carbon–carbon nanotube hybrid microspheres as efficient anode materials for sodium-ion batteries. Nanoscale, 2018, 10, 8125-8132.	5.6	35
45	Three-dimensional macroporous CNTs microspheres highly loaded with NiCo2O4 hollow nanospheres showing excellent lithium-ion storage performances. Carbon, 2018, 128, 191-200.	10.3	38
46	Mesoporous graphitic carbon-TiO2 composite microspheres produced by a pilot-scale spray-drying process as an efficient sulfur host material for Li-S batteries. Chemical Engineering Journal, 2018, 335, 600-611.	12.7	59
47	Rational design and synthesis of hierarchically structured SnO2 microspheres assembled from hollow porous nanoplates as superior anode materials for lithium-ion batteries. Nano Research, 2018, 11, 1301-1312.	10.4	32
48	Carbon microspheres with well-developed micro- and mesopores as excellent selenium host materials for lithium–selenium batteries with superior performances. Journal of Materials Chemistry A, 2018, 6, 21410-21418.	10.3	16
49	Design and synthesis of interconnected hierarchically porous anatase titanium dioxide nanofibers as high-rate and long-cycle-life anodes for lithium-ion batteries. Nanoscale, 2018, 10, 13539-13547.	5.6	17
50	Lithium-ion storage performances of sunflower-like and nano-sized hollow SnO ₂ spheres by spray pyrolysis and the nanoscale Kirkendall effect. Nanoscale, 2018, 10, 13531-13538.	5.6	24
51	Three-dimensional porous microspheres comprising hollow Fe2O3 nanorods/CNT building blocks with superior electrochemical performance for lithium ion batteries. Nanoscale, 2018, 10, 11150-11157.	5.6	46
52	Superior Electrochemical Properties of Composite Microspheres Consisting of Hollow Fe ₂ O ₃ Nanospheres and Graphitic Carbon. ACS Sustainable Chemistry and Engineering, 2018, 6, 11759-11767.	6.7	13
53	Batteries: Synthesis of Uniquely Structured SnO ₂ Hollow Nanoplates and Their Electrochemical Properties for Liâ€lon Storage (Adv. Funct. Mater. 4/2017). Advanced Functional Materials, 2017, 27, .	14.9	0
54	Electrochemical properties of amorphous GeO x -C composite microspheres prepared by a one-pot spray pyrolysis process. Ceramics International, 2017, 43, 5534-5540.	4.8	7

#	Article	IF	CITATIONS
55	Aerosol synthesis of molybdenum diselenide–reduced graphene oxide composite with empty nanovoids and enhanced hydrogen evolution reaction performances. Chemical Engineering Journal, 2017, 315, 355-363.	12.7	43
56	MoSe ₂ Embedded CNT-Reduced Graphene Oxide Composite Microsphere with Superior Sodium Ion Storage and Electrocatalytic Hydrogen Evolution Performances. ACS Applied Materials & Interfaces, 2017, 9, 10673-10683.	8.0	174
57	Rational Design and Synthesis of Extremely Efficient Macroporous CoSe ₂ -CNT Composite Microspheres for Hydrogen Evolution Reaction. Small, 2017, 13, 1700068.	10.0	116
58	Design and synthesis of Janus-structured mutually doped SnO ₂ –Co ₃ O ₄ hollow nanostructures as superior anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 25319-25327.	10.3	49
59	Synthesis of Uniquely Structured SnO ₂ Hollow Nanoplates and Their Electrochemical Properties for Liâ€ion Storage. Advanced Functional Materials, 2017, 27, 1603399.	14.9	96
60	Oneâ€Pot Synthesis of CoSe _{<i>x</i>} –rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodiumâ€ion Batteries. Chemistry - A European Journal, 2016, 22, 4140-4146.	3.3	124
61	Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by a spray pyrolysis process. Nanoscale, 2016, 8, 11889-11896.	5.6	70
62	Large-scale production of spherical FeSe2-amorphous carbon composite powders as anode materials for sodium-ion batteries. Materials Characterization, 2016, 120, 349-356.	4.4	72
63	Na-ion Storage Performances of FeSex and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls prepared by Nanoscale Kirkendall Diffusion Process. Scientific Reports, 2016, 6, 22432.	3.3	64
64	Superior Lithiumâ€lon Storage Properties of Mesoporous CuO–Reduced Graphene Oxide Composite Powder Prepared by a Twoâ€Step Sprayâ€Drying Process. Chemistry - A European Journal, 2015, 21, 9179-9184.	3.3	25
65	Phase-pure β-NiMoO4 yolk-shell spheres for high-performance anode materials in lithium-ion batteries. Electrochimica Acta, 2015, 174, 102-110.	5.2	52
66	Large-Scale Production of MoO 3 -Reduced Graphene Oxide Powders with Superior Lithium Storage Properties by Spray-Drying Process. Electrochimica Acta, 2015, 173, 581-587.	5.2	38
67	Multiphase and Double-Layer NiFe2O4@NiO-Hollow-Nanosphere-Decorated Reduced Graphene Oxide Composite Powders Prepared by Spray Pyrolysis Applying Nanoscale Kirkendall Diffusion. ACS Applied Materials & Interfaces, 2015, 7, 16842-16849.	8.0	57
68	Kilogram-Scale Synthesis of Pd-Loaded Quintuple-Shelled Co ₃ O ₄ Microreactors and Their Application to Ultrasensitive and Ultraselective Detection of Methylbenzenes. ACS Applied Materials & Interfaces, 2015, 7, 7717-7723.	8.0	56
69	Novel cobalt oxide-nanobubble-decorated reduced graphene oxide sphere with superior electrochemical properties prepared by nanoscale Kirkendall diffusion process. Nano Energy, 2015, 17, 17-26.	16.0	70
70	Superior electrochemical properties of spherical-like Co2(OH)3Cl-reduced graphene oxide composite powders with ultrafine nanocrystals. Carbon, 2015, 84, 14-23.	10.3	23
71	Electrochemical properties of cobalt hydroxychloride microspheres as a new anode material for Li-ion batteries. Scientific Reports, 2015, 4, 5785.	3.3	30
72	Oneâ€Pot Method for Synthesizing Sphericalâ€Like Metal Sulfide–Reduced Graphene Oxide Composite Powders with Superior Electrochemical Properties for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2014, 20, 12183-12189.	3.3	36

#	Article	IF	CITATIONS
73	Electrochemical properties of ultrafine TiO2-doped MoO3 nanoplates prepared by one-pot flame spray pyrolysis. RSC Advances, 2014, 4, 17382.	3.6	19
74	Effect of esterification reaction of citric acid and ethylene glycol on the formation of multi-shelled cobalt oxide powders with superior electrochemical properties. Nano Research, 2014, 7, 1738-1748.	10.4	47
75	Characteristics of precursor powders of a nickel-rich cathode material prepared by a spray drying process using water-soluble metal salts. RSC Advances, 2014, 4, 44203-44207.	3.6	20
76	Electrochemical properties of sulfur–carbon hollow nanospheres with varied polar titanium oxide layer location for lithium–sulfur batteries. International Journal of Energy Research, 0, , .	4.5	3