List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12177752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Road to Personalized Myeloma Medicine: Patient-specific Single-domain Antibodies for Anti-idiotypic Radionuclide Therapy. Molecular Cancer Therapeutics, 2022, 21, 159-169.	1.9	9
2	Dendritic Cell-Based Immunotherapy in Multiple Myeloma: Challenges, Opportunities, and Future Directions. International Journal of Molecular Sciences, 2022, 23, 904.	1.8	25
3	Pyrroline-5-Carboxylate Reductase 1: a novel target for sensitizing multiple myeloma cells to bortezomib by inhibition of PRAS40-mediated protein synthesis. Journal of Experimental and Clinical Cancer Research, 2022, 41, 45.	3.5	13
4	System Xcâ^' inhibition blocks bone marrow-multiple myeloma exosomal crosstalk, thereby countering bortezomib resistance. Cancer Letters, 2022, 535, 215649.	3.2	11
5	A distinct metabolic response characterizes sensitivity to EZH2 inhibition in multiple myeloma. Cell Death and Disease, 2021, 12, 167.	2.7	12
6	Expert review on softâ€ŧissue plasmacytomas in multiple myeloma: definition, disease assessment and treatment considerations. British Journal of Haematology, 2021, 194, 496-507.	1.2	67
7	Epigenetic Modifiers: Anti-Neoplastic Drugs With Immunomodulating Potential. Frontiers in Immunology, 2021, 12, 652160.	2.2	12
8	Complement C3a activates osteoclasts by regulating the PI3K/PDK1/SGK3 pathway in patients with multiple myeloma. Cancer Biology and Medicine, 2021, 18, 721-733.	1.4	5
9	Tasquinimod Targets Immunosuppressive Myeloid Cells, Increases Osteogenesis and Has Direct Anti-Myeloma Effects By Inhibiting c-Myc Expression in Vitro and In Vivo. Blood, 2021, 138, 1594-1594.	0.6	1
10	Pyrroline-5-Carboxylate Reductase 1: A Novel Target for Sensitizing Myeloma to Cytotoxic Agents By Inhibition of PRAS40-Mediated Protein Synthesis. Blood, 2021, 138, 1574-1574.	0.6	0
11	ER stress arm XBP1s plays a pivotal role in proteasome inhibition-induced bone formation. Stem Cell Research and Therapy, 2020, 11, 516.	2.4	25
12	Identification of the immune checkpoint signature of multiple myeloma using mass cytometryâ€based singleâ€cell analysis. Clinical and Translational Immunology, 2020, 9, e01132.	1.7	14
13	AXL Receptor Tyrosine Kinase as a Therapeutic Target in Hematological Malignancies: Focus on Multiple Myeloma. Cancers, 2019, 11, 1727.	1.7	18
14	The Use of Murine Models for Studying Mechanistic Insights of Genomic Instability in Multiple Myeloma. Frontiers in Genetics, 2019, 10, 740.	1.1	5
15	The anaphase-promoting complex/cyclosome: a new promising target in diffuse large B-cell lymphoma and mantle cell lymphoma. British Journal of Cancer, 2019, 120, 1137-1146.	2.9	12
16	A niche-dependent myeloid transcriptome signature defines dormant myeloma cells. Blood, 2019, 134, 30-43.	0.6	99
17	Maternal embryonic leucine zipper kinase is a novel target for diffuse large B cell lymphoma and mantle cell lymphoma. Blood Cancer Journal, 2019, 9, 87.	2.8	7
18	The Transfer of Sphingomyelinase Contributes to Drug Resistance in Multiple Myeloma. Cancers, 2019, 11, 1823.	1.7	36

#	Article	IF	CITATIONS
19	Myeloid-derived suppressor cells induce multiple myeloma cell survival by activating the AMPK pathway. Cancer Letters, 2019, 442, 233-241.	3.2	49
20	Mesenchymal stem cells in multiple myeloma: a therapeutical tool or target?. Leukemia, 2018, 32, 1500-1514.	3.3	77
21	DNMTi/HDACi combined epigenetic targeted treatment induces reprogramming of myeloma cells in the direction of normal plasma cells. British Journal of Cancer, 2018, 118, 1062-1073.	2.9	30
22	Loss of RASSF4 Expression in Multiple Myeloma Promotes RAS-Driven Malignant Progression. Cancer Research, 2018, 78, 1155-1168.	0.4	27
23	Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts. Blood Cancer Journal, 2018, 8, 105.	2.8	113
24	Targeting angiogenesis in multiple myeloma by the VEGF and HGF blocking DARPin® protein MP0250: a preclinical study. Oncotarget, 2018, 9, 13366-13381.	0.8	37
25	The Epigenome in Multiple Myeloma: Impact on Tumor Cell Plasticity and Drug Response. Frontiers in Oncology, 2018, 8, 566.	1.3	39
26	The genetic landscape of 5T models for multiple myeloma. Scientific Reports, 2018, 8, 15030.	1.6	15
27	Checkpoint inhibition in the treatment of multiple myeloma: A way to boost innate-like T cell anti-tumor function?. Molecular Immunology, 2018, 101, 521-526.	1.0	6
28	Epigenetic treatment of multiple myeloma mediates tumor intrinsic and extrinsic immunomodulatory effects. Oncolmmunology, 2018, 7, e1484981.	2.1	26
29	Exosomes Play a Key Role in Multiple Myeloma Bone Disease and Tumor Development. Blood, 2018, 132, 4484-4484.	0.6	3
30	Both mucosal-associated invariant and natural killer T-cell deficiency in multiple myeloma can be countered by PD-1 inhibition. Haematologica, 2017, 102, e266-e270.	1.7	28
31	Inhibiting the osteocyte-specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma. Blood, 2017, 129, 3452-3464.	0.6	153
32	Tumourâ€associated macrophageâ€mediated survival of myeloma cells through <scp>STAT3</scp> activation. Journal of Pathology, 2017, 241, 534-546.	2.1	50
33	Extracellular S100A9 Protein in Bone Marrow Supports Multiple Myeloma Survival by Stimulating Angiogenesis and Cytokine Secretion. Cancer Immunology Research, 2017, 5, 839-846.	1.6	41
34	The therapeutic potential of cell cycle targeting in multiple myeloma. Oncotarget, 2017, 8, 90501-90520.	0.8	39
35	Experimental African trypanosome infection suppresses the development of multiple myeloma in mice by inducing intrinsic apoptosis of malignant plasma cells. Oncotarget, 2017, 8, 52016-52025.	0.8	5
36	Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget, 2016, 7, 38927-38945.	0.8	53

#	Article	IF	CITATIONS
37	The myeloma stem cell concept, revisited: from phenomenology to operational terms. Haematologica, 2016, 101, 1451-1459.	1.7	55
38	Induction of miR-146a by multiple myeloma cells in mesenchymal stromal cells stimulates their pro-tumoral activity. Cancer Letters, 2016, 377, 17-24.	3.2	106
39	A CRP78-Directed Monoclonal Antibody Recaptures Response in Refractory Multiple Myeloma with Extramedullary Involvement. Clinical Cancer Research, 2016, 22, 4341-4349.	3.2	43
40	Abnormal IGF-Binding Protein Profile in the Bone Marrow of Multiple Myeloma Patients. PLoS ONE, 2016, 11, e0154256.	1.1	8
41	Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget, 2016, 7, 6521-6537.	0.8	66
42	Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget, 2016, 7, 4062-4076.	0.8	33
43	Does an NKT-cell-based immunotherapeutic approach have a future in multiple myeloma?. Oncotarget, 2016, 7, 23128-23140.	0.8	12
44	The insulin-like growth factor system in multiple myeloma: diagnostic and therapeutic potential. Oncotarget, 2016, 7, 48732-48752.	0.8	40
45	SET8 Is a Potential Therapeutic Target in MM. Blood, 2016, 128, 4435-4435.	0.6	0
46	Multiple myeloma induces Mcl-1 expression and survival of myeloid-derived suppressor cells. Oncotarget, 2015, 6, 10532-10547.	0.8	64
47	The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells. Oncotarget, 2015, 6, 43992-44004.	0.8	127
48	Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nature Communications, 2015, 6, 8983.	5.8	296
49	<i>In vivo</i> treatment with epigenetic modulating agents induces transcriptional alterations associated with prognosis and immunomodulation in multiple myeloma. Oncotarget, 2015, 6, 3319-3334.	0.8	25
50	Increased resistance to proteasome inhibitors in multiple myeloma mediated by cIAP2 - implications for a combinatorial treatment. Oncotarget, 2015, 6, 20621-20635.	0.8	17
51	Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma. Cancers, 2014, 6, 1363-1381.	1.7	68
52	Bone marrow stromal cell–derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood, 2014, 124, 555-566.	0.6	371
53	Myeloid-Derived Suppressor Cells as Therapeutic Target in Hematological Malignancies. Frontiers in Oncology, 2014, 4, 349.	1.3	92
54	Stimulation of invariant natural killer T cells by αâ€Galactosylceramide activates the <scp>JAK</scp> â€ <scp>STAT</scp> pathway in endothelial cells and reduces angiogenesis in the 5T33 multiple myeloma model. British Journal of Haematology, 2014, 167, 651-663.	1.2	12

#	Article	IF	CITATIONS
55	The role of DNA damage and repair in decitabine-mediated apoptosis in multiple myeloma. Oncotarget, 2014, 5, 3115-3129.	0.8	48
56	The ICF-1 receptor inhibitor picropodophyllin potentiates the anti-myeloma activity of a BH3-mimetic. Oncotarget, 2014, 5, 11193-11208.	0.8	15
57	Vorinostat-induced bone loss might be related to drug toxicity. Bone, 2013, 57, 384-385.	1.4	4
58	Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo. Acta Pharmacologica Sinica, 2013, 34, 699-709.	2.8	53
59	Synergistic Induction of Apoptosis in Multiple Myeloma Cells by Bortezomib and Hypoxia-Activated Prodrug TH-302, <i>In Vivo</i> and <i>In Vitro</i> . Molecular Cancer Therapeutics, 2013, 12, 1763-1773.	1.9	48
60	Epigenetic Modulating Agents as a New Therapeutic Approach in Multiple Myeloma. Cancers, 2013, 5, 430-461.	1.7	43
61	Mithramycin Exerts an Anti-Myeloma Effect and Displays Anti-Angiogenic Effects through Up-Regulation of Anti-Angiogenic Factors. PLoS ONE, 2013, 8, e62818.	1.1	17
62	Upregulation of miR-135b Is Involved in the Impaired Osteogenic Differentiation of Mesenchymal Stem Cells Derived from Multiple Myeloma Patients. PLoS ONE, 2013, 8, e79752.	1.1	64
63	Preclinical Evaluation of Invariant Natural Killer T Cells in the 5T33 Multiple Myeloma Model. PLoS ONE, 2013, 8, e65075.	1.1	24
64	Epigenetic Regulation of Myeloma Within Its Bone Marrow Microenvironment. , 2013, , 255-282.		0
65	The Role of Notch Signaling in Multiple Myeloma. , 2013, , 77-95.		1
66	The HDAC Inhibitor LBH589 Enhances the Antimyeloma Effects of the IGF-1RTK Inhibitor Picropodophyllin. Clinical Cancer Research, 2012, 18, 2230-2239.	3.2	16
67	Sorafenib Has Potent Antitumor Activity against Multiple Myeloma <i>In Vitro</i> , <i>Ex Vivo</i> , and <i>In Vivo</i> in the 5T33MM Mouse Model. Cancer Research, 2012, 72, 5348-5362.	0.4	44
68	Understanding the hypoxic niche of multiple myeloma: therapeutic implications and contributions of mouse models. DMM Disease Models and Mechanisms, 2012, 5, 763-771.	1.2	51
69	Activation of ATF4 mediates unwanted Mcl-1 accumulation by proteasome inhibition. Blood, 2012, 119, 826-837.	0.6	78
70	Dll1/Notch activation contributes to bortezomib resistance by upregulating CYP1A1 in multiple myeloma. Biochemical and Biophysical Research Communications, 2012, 428, 518-524.	1.0	47
71	In vitro expanded bone marrow-derived murine (C57Bl/KaLwRij) mesenchymal stem cells can acquire CD34 expression and induce sarcoma formation in vivo. Biochemical and Biophysical Research Communications, 2012, 424, 391-397.	1.0	12
72	Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: A multicenter international myeloma working group study. Leukemia, 2012, 26, 149-157.	3.3	664

#	Article	IF	CITATIONS
73	Bone Marrow-Derived Mesenchymal Stromal Cells are Attracted by Multiple Myeloma Cell-Produced Chemokine CCL25 and Favor Myeloma Cell Growth in Vitro and In Vivo. Stem Cells, 2012, 30, 266-279.	1.4	87
74	Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood, 2012, 119, 5782-5794.	0.6	268
75	Dll1/Notch Interaction Contributes to a Decreased Sensitivity of Myeloma Cells to Bortezomib. Blood, 2012, 120, 1840-1840.	0.6	Ο
76	Mcl-1 Reduction Due to Caspase-dependent Cleavage during Endoplasmic Reticulum Stress-induced Apoptosis. Journal of Biological Chemistry, 2011, 286, le24.	1.6	4
77	The Microenvironment and Molecular Biology of the Multiple Myeloma Tumor. Advances in Cancer Research, 2011, 110, 19-42.	1.9	61
78	IGF-1 suppresses Bim expression in multiple myeloma via epigenetic and posttranslational mechanisms. Blood, 2010, 115, 2430-2440.	0.6	88
79	Targeting the multiple myeloma hypoxic niche with TH-302, a hypoxia-activated prodrug. Blood, 2010, 116, 1524-1527.	0.6	131
80	In anemia of multiple myeloma, hepcidin is induced by increased bone morphogenetic protein 2. Blood, 2010, 116, 3635-3644.	0.6	120
81	Thymosin Â4 has tumor suppressive effects and its decreased expression results in poor prognosis and decreased survival in multiple myeloma. Haematologica, 2010, 95, 163-167.	1.7	22
82	Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo. Journal of Bone and Mineral Research, 2010, 25, 2633-2646.	3.1	129
83	Thymosin β4 in multiple myeloma: friend or foe. Annals of the New York Academy of Sciences, 2010, 1194, 125-129.	1.8	8
84	Polycomb Target Genes Are Silenced in Multiple Myeloma. PLoS ONE, 2010, 5, e11483.	1.1	81
85	The Effects of Forodesine in Murine and Human Multiple Myeloma Cells. Advances in Hematology, 2010, 2010, 1-8.	0.6	4
86	An Improved Harvest and <i>in Vitro</i> Expansion Protocol for Murine Bone Marrow-Derived Mesenchymal Stem Cells. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-10.	3.0	51
87	Murine Models of Myeloma Bone Disease: The Importance of Choice. , 2010, , 151-168.		0
88	Involvement of Dll1/Notch Interaction In MM Drug Resistance, Clonogenic Growth and In Vivo Engraftment. Blood, 2010, 116, 2966-2966.	0.6	0
89	Histone deacetylase inhibitors in multiple myeloma. Hematology Reports, 2009, 1, 9.	0.3	1
90	The role of the insulin-like growth factor 1 receptor axis in multiple myeloma. Archives of Physiology and Biochemistry, 2009, 115, 49-57.	1.0	36

#	Article	IF	CITATIONS
91	Bortezomib Alone or in Combination with the Histone Deacetylase Inhibitor JNJ-26481585: Effect on Myeloma Bone Disease in the 5T2MM Murine Model of Myeloma. Cancer Research, 2009, 69, 5307-5311.	0.4	70
92	Screening of amide analogues of Trichostatin A in cultures of primary rat hepatocytes: search for potent and safe HDAC inhibitors. Investigational New Drugs, 2009, 27, 338-346.	1.2	10
93	Inhibiting Dickkopf-1 (Dkk1) Removes Suppression of Bone Formation and Prevents the Development of Osteolytic Bone Disease in Multiple Myeloma. Journal of Bone and Mineral Research, 2009, 24, 425-436.	3.1	230
94	Epigenetic Regulation of Multiple Myeloma Within its Bone Marrow Microenvironment. Clinical Lymphoma and Myeloma, 2009, 9, S29-S30.	1.4	1
95	Myeloid-Derived Suppressor Cells in Multiple Myeloma Blood, 2009, 114, 2794-2794.	0.6	2
96	Characterization of Hepcidin-Inducing Cytokines in Multiple Myeloma Blood, 2009, 114, 2001-2001.	0.6	0
97	Changes in Blood Circulating Cell Populations May Reflect the Anti-Angiogenic and Chemosensitizing Effects of Bortezomib and Thalidomide Treatment in Patients with Multiple Myelomatreatment in Patients with Multiple Myeloma Blood, 2009, 114, 2807-2807.	0.6	0
98	Targeting CDK4/CDK6 Impairs Osteoclast Progenitor Pool Expansion and Blocks Osteolytic Lesion Development in Multiple Myeloma Blood, 2009, 114, 298-298.	0.6	1
99	Extravasation and homing mechanisms in multiple myeloma. Clinical and Experimental Metastasis, 2008, 25, 325-334.	1.7	90
100	Multiple myeloma – an update on diagnosis and treatment. European Journal of Haematology, 2008, 81, 329-343.	1.1	46
101	Geranylgeranyl transferase type II inhibition prevents myeloma bone disease. Biochemical and Biophysical Research Communications, 2008, 377, 453-457.	1.0	31
102	Epigenetic Silencing of the Tetraspanin CD9 during Disease Progression in Multiple Myeloma Cells and Correlation with Survival. Clinical Cancer Research, 2008, 14, 2918-2926.	3.2	46
103	A Novel Therapeutic Combination Using PD 0332991 and Bortezomib: Study in the 5T33MM Myeloma Model. Cancer Research, 2008, 68, 5519-5523.	0.4	98
104	Unraveling the biology of multiple myeloma disease: cancer stem cells, acquired intracellular changes and interactions with the surrounding micro-environment. Bulletin Du Cancer, 2008, 95, 301-13.	0.6	27
105	Decreased Thymosin Beta 4 Expression Results in Poor Prognosis and Decreased Survival in Multiple Myeloma Blood, 2008, 112, 1703-1703.	0.6	0
106	Inhibition of p38α Mitogen-Activated Protein Kinase Prevents the Development of Osteolytic Bone Disease, Reduces Tumor Burden, and Increases Survival in Murine Models of Multiple Myeloma. Cancer Research, 2007, 67, 4572-4577.	0.4	43
107	Myeloma Cells and Their Interactions With the Bone Marrow Endothelial Cells. Current Immunology Reviews, 2007, 3, 41-55.	1.2	6
108	An Osteoprotegerin-like Peptidomimetic Inhibits Osteoclastic Bone Resorption and Osteolytic Bone Disease in Myeloma. Cancer Research, 2007, 67, 202-208.	0.4	80

#	Article	lF	CITATIONS
109	Apomineâ,"¢, an inhibitor of HMG-CoA-reductase, promotes apoptosis of myeloma cells in vitro and is associated with a modulation of myeloma in vivo. International Journal of Cancer, 2007, 120, 1657-1663.	2.3	20
110	Targeting the IGF-1R using picropodophyllin in the therapeutical 5T2MM mouse model of multiple myeloma: Beneficial effects on tumor growth, angiogenesis, bone disease and survival. International Journal of Cancer, 2007, 121, 1857-1861.	2.3	57
111	Regulation of Bim Expression by IGF-1 in the 5T33MM Murine Model for Multiple Myeloma Blood, 2007, 110, 3512-3512.	0.6	2
112	In Vivo Evaluation of a BAFF Inhibitor AMG 523 Suggests Lack of Efficacy in Multiple Myeloma Tumor Models Blood, 2007, 110, 1518-1518.	0.6	0
113	Targeting CDK4/6 and the Cell Cycle in Combination with Bortezomib in the 5T33MM Myeloma Model Blood, 2007, 110, 254-254.	0.6	0
114	Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model. Blood, 2006, 107, 655-660.	0.6	124
115	IGF-1 receptor tyrosine kinase inhibition by the cyclolignan PPP induces G2/M-phase accumulation and apoptosis in multiple myeloma cells. Blood, 2006, 107, 669-678.	0.6	133
116	Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: a study in the 5TMM model. Clinical and Experimental Metastasis, 2006, 23, 291-300.	1.7	103
117	Inhibition of p38α MAPK Reduces Tumor Burden, Prevents the Development of Myeloma Bone Disease, and Increases Survival in the 5T2 and 5T33 Murine Models of Myeloma Blood, 2006, 108, 3436-3436.	0.6	7
118	Bone Marrow Adipocytes Influence Multiple Myeloma Development by Secretion of Different Growth Factors and Chemokines Blood, 2006, 108, 5030-5030.	0.6	0
119	Clinical significance of chemokine receptor (CCR1, CCR2 and CXCR4) expression in human myeloma cells: the association with disease activity and survival. Haematologica, 2006, 91, 200-6.	1.7	57
120	The involvement of stromal derived factor 1alpha in homing and progression of multiple myeloma in the 5TMM model. Haematologica, 2006, 91, 605-12.	1.7	56
121	The involvement of osteopontin and its receptors in multiple myeloma cell survival, migration and invasion in the murine 5T33MM model. British Journal of Haematology, 2005, 132, 051220022257013.	1.2	37
122	The 5T2MM Murine Model of Multiple Myeloma: Maintenance and Analysis. , 2005, 113, 191-206.		23
123	Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression. Haematologica, 2005, 90, 810-7.	1.7	79
124	Part of the multiple myeloma-associated microvessels is functionally connected to the systemic circulation: a study in the murine 5T33MM model. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2004, 445, 389-395.	1.4	4
125	Of mice and men: disease models of multiple myeloma. Drug Discovery Today: Disease Models, 2004, 1, 373-380.	1.2	6
126	Evidence of a role for RANKL in the development of myeloma bone disease. Current Opinion in Pharmacology, 2004, 4, 340-346.	1.7	23

#	Article	IF	CITATIONS
127	Myeloma cells (5TMM) and their interactions with the marrow microenvironment. Blood Cells, Molecules, and Diseases, 2004, 33, 111-119.	0.6	30
128	Multifunctional Role of Matrix Metalloproteinases in Multiple Myeloma. American Journal of Pathology, 2004, 165, 869-878.	1.9	44
129	Angiogenic switch during 5T2MM murine myeloma tumorigenesis: role of CD45 heterogeneity. Blood, 2004, 103, 3131-3137.	0.6	55
130	Role of the Hypoxic Bone Marrow Microenvironment in Multiple Myeloma Tumor Progression Blood, 2004, 104, 2348-2348.	0.6	2
131	Targeting the Insulin-Like Growth Factor-I Receptor (IGF-IR) in Multiple Myeloma Cells Using Selective IGF-IR Tyrosine Kinase Inhibitors Blood, 2004, 104, 639-639.	0.6	2
132	Inhibiting the IGF-1 Receptor Tyrosine Kinase with Picropodophillin: An In Vitro and In Vivo Study in the 5T33MM Mouse Model Blood, 2004, 104, 640-640.	0.6	0
133	Zoledronic Acid Treatment of 5T2MM-Bearing Mice Inhibits the Development of Myeloma Bone Disease: Evidence for Decreased Osteolysis, Tumor Burden and Angiogenesis, and Increased Survival. Journal of Bone and Mineral Research, 2003, 18, 482-492.	3.1	233
134	Selective in vivo growth of lymphocyte function- associated antigen-1–positive murine myeloma cells. Experimental Hematology, 2003, 31, 48-55.	0.2	20
135	Bisphosphonates and osteoprotegerin as inhibitors of myeloma bone disease. Cancer, 2003, 97, 818-824.	2.0	34
136	Multiple myeloma biology: lessons from the 5TMM models. Immunological Reviews, 2003, 194, 196-206.	2.8	113
137	Multiple myeloma tumor progression in the 5T2MM murine model is a multistage and dynamic process of differentiation, proliferation, invasion, and apoptosis. Blood, 2003, 101, 3136-3141.	0.6	28
138	Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Research, 2003, 63, 287-9.	0.4	141
139	The Fâ€Actin Content of Multiple Myeloma Cells as a Measure of Their Migration. Annals of the New York Academy of Sciences, 2002, 973, 124-136.	1.8	19
140	Monocyte chemoattractant protein-1 (MCP-1), secreted by bone marrow endothelial cells, induces chemoattraction of 5T multiple myeloma cells. Clinical and Experimental Metastasis, 2002, 19, 87-90.	1.7	50
141	Mechanisms involved in the differential bone marrow homing of CD45 subsets in 5T murine models of myeloma. Clinical and Experimental Metastasis, 2002, 19, 583-591.	1.7	25
142	Reply to salomo and gimsing. British Journal of Haematology, 2001, 113, 842-842.	1.2	1
143	Rat Hepatic Natural Killer Cells (Pit Cells) Express mRNA and Protein Similar to in Vitro Interleukin-2 Activated Spleen Natural Killer Cells. Cellular Immunology, 2001, 210, 41-48.	1.4	19
144	The potent bisphosphonate ibandronate does not induce myeloma cell apoptosis in a murine model of established multiple myeloma. British Journal of Haematology, 2000, 111, 283-286.	1.2	2

#	Article	IF	CITATIONS
145	The 5TMM series: a useful in vivo mouse model of human multiple myeloma. The Hematology Journal, 2000, 1, 351-356.	2.0	114
146	The potent bisphosphonate ibandronate does not induce myeloma cell apoptosis in a murine model of established multiple myeloma. British Journal of Haematology, 2000, 111, 283-286.	1.2	34
147	On the cell biology of pit cells, the liver-specific NK cells. World Journal of Gastroenterology, 2000, 6, 1.	1.4	29
148	Participation of CD45, NKR-P1A and ANK61 antigen in rat hepatic NK cell (pit cell)mediated target cell cytotoxicity. World Journal of Gastroenterology, 2000, 6, 546-552.	1.4	5
149	Insulin-Like Growth Factor-1 Acts as a Chemoattractant Factor for 5T2 Multiple Myeloma Cells. Blood, 1999, 93, 235-241.	0.6	82
150	Involvement of LFA-1 in hepatic NK cell (pit cell)-mediated cytolysis and apoptosis of colon carcinoma cells. Journal of Hepatology, 1999, 31, 110-116.	1.8	22
151	Homing behaviour of the malignant cell clone in multiple myeloma. Medical Oncology, 1998, 15, 154-164.	1.2	28
152	The number and distribution of hepatic natural killer cells (pit cells) in normal rat liver: An immunohistochemical study. Hepatology, 1995, 21, 1690-1694.	3.6	8
153	The role of Kupffer cells in the differentiation process of hepatic natural killer cells. Hepatology, 1995, 22, 283-290.	3.6	45
154	The role of Kupffer cells in the differentiation process of hepatic natural killer cells. Hepatology, 1995, 22, 283-290.	3.6	1
155	Effect of irradiation on hepatic natural killer cells. Hepatology, 1994, 19, 1453-1458.	3.6	0
156	Origin and differentiation of hepatic natural killer cells (pit cells). Hepatology, 1993, 18, 919-925.	3.6	37
157	Liver Cell Heterogeneity: Functions of Non-Parenchymal Cells. Enzyme, 1992, 46, 155-168.	0.7	112
158	Characterization of a phenotypically and functionally distinct subset of large granular lymphocytes (pit cells) in rat liver sinusoids. Hepatology, 1990, 12, 70-75.	3.6	65
159	C-Banding as a Simple Tool to Discriminate Between Micronuclei Induced by Clastogens and Aneugens. Biotechnic & Histochemistry, 1988, 63, 351-354.	0.4	32
160	Inhibition of the Protein Arginine Methyltransferase PRMT5 in High-Risk Multiple Myeloma as a Novel Treatment Approach. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3