Michela Faccoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1217695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical study about the effect of bainitic traces on plasticity in ferritic-pearlitic railway wheels. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235, 726-740.	2.0	3
2	A simplified numerical study of wheel/rail material coupling in presence of solid contaminants. Tribology - Materials, Surfaces and Interfaces, 2021, 15, 102-114.	1.4	5
3	Metallurgical and Technological Investigation with Experimental Archaeometallurgical Reproduction of a Lombard Bronze Buckle from North Italy. International Journal of Metalcasting, 2021, 15, 806-817.	1.9	3
4	Monitoring the Damage Evolution in Rolling Contact Fatigue Tests Using Machine Learning and Vibrations. Metals, 2021, 11, 283.	2.3	4
5	Application of the Failure Assessment Diagram approach for contact fatigue damage evaluation in railway wheel steels. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 2087-2100.	3.4	5
6	Metallurgical and Technological Characterization of a Lombard Seax from North Italy. Metallography, Microstructure, and Analysis, 2021, 10, 736-753.	1.0	4
7	A Small-Scale Experimental Study of the Damage Due to Intermittent Shoe Braking on the Tread of High-Speed Train Wheels. Tribology Transactions, 2020, 63, 1041-1050.	2.0	9
8	Characterization and Technological Origin Identification of Ancient Iron Nails. Jom, 2020, 72, 3224-3235.	1.9	6
9	Effect of shoe braking on wear and fatigue damage of various railway wheel steels for high speed applications. Wear, 2019, 434-435, 203005.	3.1	19
10	Study of the damage induced by thermomechanical load in ER7 tread braked railway wheels. Procedia Structural Integrity, 2019, 18, 170-182.	0.8	7
11	On Mechanical Properties of New Railway Wheel Steels for Desert Environments and Sand Caused Wheel Damage Mechanisms. Journal of Materials Engineering and Performance, 2019, 28, 2946-2953.	2.5	8
12	Effects of full-stops on shoe-braked railway wheel wear damage. Wear, 2019, 428-429, 64-75.	3.1	14
13	Experimental and Numerical Study of an Automotive Component Produced with Innovative Ceramic Core in High Pressure Die Casting (HPDC). Metals, 2019, 9, 217.	2.3	6
14	Changes in the Microstructure and Mechanical Properties of Railway Wheel Steels as a Result of the Thermal Load Caused by Shoe Braking. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1701-1714.	2.2	16
15	Effect of desert sand on wear and rolling contact fatigue behaviour of various railway wheel steels. Wear, 2018, 396-397, 146-161.	3.1	49
16	Experimental and Numerical Investigation of the Thermal Effects on Railway Wheels for Shoe-Braked High-Speed Train Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4544-4554.	2.2	21
17	A Pin-on-Disc Study on the Wear Behaviour of Two High-Performance Railway Wheel Steels. Tribology Letters, 2017, 65, 1	2.6	8
18	Rolling Contact Fatigue and Wear Behavior of High-Performance Railway Wheel Steels Under Various Rolling-Sliding Contact Conditions. Journal of Materials Engineering and Performance, 2017, 26, 3271-3284.	2.5	29

MICHELA FACCOLI

#	Article	IF	CITATIONS
19	Optimization of heat treatment of gravity cast Sr-modified B356 aluminum alloy. Transactions of Nonferrous Metals Society of China, 2017, 27, 1698-1706.	4.2	10
20	On the Step Cooling Treatment for the Assessment of Temper Embrittlement Susceptibility of Heavy Forgings in Superclean Steels. Metals, 2016, 6, 239.	2.3	4
21	Warm spray applied to steel component repair: experimental study. Surface Engineering, 2016, 32, 707-711.	2.2	3
22	Metallurgical Investigation of a Steel Miner's Chisel From Ponte Val Gabbia III Site. Jom, 2015, 67, 260-271.	1.9	12
23	Effects of artificial aging conditions on mechanical properties of gravity cast B356 aluminum alloy. Transactions of Nonferrous Metals Society of China, 2015, 25, 1035-1042.	4.2	10
24	Using vibrations to detect high wear rates in rolling contact fatigue tests. Acta IMEKO (2012), 2015, 4, 66.	0.7	11
25	Notch ductility of steels for automotive components. Engineering Fracture Mechanics, 2014, 127, 181-193.	4.3	18
26	Cold Spray Repair of Martensitic Stainless Steel Components. Journal of Thermal Spray Technology, 2014, 23, 1270-1280.	3.1	23
27	Probabilistic fracture toughness of a duplex stainless steel in the transition range. Engineering Fracture Mechanics, 2013, 97, 207-215.	4.3	2
28	Influence of inclusion content on rolling contact fatigue in a gear steel: Experimental analysis and predictive modelling. Engineering Fracture Mechanics, 2011, 78, 2761-2774.	4.3	27
29	Progressive damage assessment in the near-surface layer of railway wheel–rail couple under cyclic contact. Wear, 2011, 271, 408-416.	3.1	68
30	On the strengthening mechanisms of 18 carat yellow gold and its mechanical behaviour. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 488, 50-54.	5.6	5
31	The competitive role of wear and RCF in a rail steel. Engineering Fracture Mechanics, 2005, 72, 287-308.	4.3	132
32	Tribological Behavior of Two High Performance Railway Wheel Steels Paired with a Brake Block Cast Iron. Tribology Transactions, 0, , 1-13.	2.0	2