
Chengju Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1217630/publications.pdf Version: 2024-02-01

CHENCULLUL

#	Article	IF	CITATIONS
1	Humanoid adaptive locomotion control through a bioinspired CPG-based controller. Robotica, 2022, 40, 762-779.	1.9	7
2	RoboSeg: Real-Time Semantic Segmentation on Computationally Constrained Robots. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 1567-1577.	9.3	7
3	Geometry-Constrained Scale Estimation for Monocular Visual Odometry. IEEE Transactions on Multimedia, 2022, 24, 3144-3156.	7.2	2
4	LedMapper: Toward Efficient and Accurate LED Mapping for Visible Light Positioning at Scale. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	4.7	9
5	Real-Time Trajectory Planning for Autonomous Driving with Gaussian Process and Incremental Refinement. , 2022, , .		14
6	Channel attention and multi-scale graph neural networks for skeleton-based action recognition. AI Communications, 2022, 35, 187-205.	1.2	2
7	Foot Placement Compensator Design for Humanoid Walking Based on Discrete Control Lyapunov Function. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 2332-2341.	9.3	5
8	Navigation in Multi-Agent System With Side Preference Path Optimizer. IEEE Access, 2021, 9, 113944-113953.	4.2	2
9	Nonlinear Fitting Correction of Binocular Ranging Error for Visual SLAM. , 2021, , .		0
10	Multi-Agents Based Safe Path Planning of Autonomous Mobile Robots in Smart Factories. , 2021, , .		0
11	Sensor-Free Method with BP Network to Achieve Drag Teaching on the 7-DoF Collaborative Robot. , 2021, , .		1
12	Robust Control of Semi-passive Biped Dynamic Locomotion based on a Discrete Control Lyapunov Function. Robotica, 2020, 38, 1345-1358.	1.9	11
13	Efficient and robust approaches for three-dimensional sound source recognition and localization using humanoid robots sensor arrays. International Journal of Advanced Robotic Systems, 2020, 17, 172988142094135.	2.1	1
14	Workspace Trajectory Generation Method for Humanoid Adaptive Walking With Dynamic Motion Primitives. IEEE Access, 2020, 8, 54652-54662.	4.2	5
15	PointTrackNet: An End-to-End Network For 3-D Object Detection and Tracking From Point Clouds. IEEE Robotics and Automation Letters, 2020, 5, 3206-3212.	5.1	42
16	Active Balance Control of Humanoid Locomotion Based on Foot Position Compensation. Journal of Bionic Engineering, 2020, 17, 134-147.	5.0	12
17	Online Learning Upper Body Posture Control for Humanoid Walking Based on BPNN. , 2020, , .		0
18	Focal Loss in 3D Object Detection. IEEE Robotics and Automation Letters, 2019, 4, 1263-1270.	5.1	42

Chengju Liu

#	Article	IF	CITATIONS
19	A GPS-aided Omnidirectional Visual-Inertial State Estimator in Ubiquitous Environments. , 2019, , .		25
20	Rhythmic-Reflex Hybrid Adaptive Walking Control of Biped Robot. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 94, 603-619.	3.4	9
21	Fuzzy model-based controller synthesis for networked nonlinear systems with event triggering communication scheme. International Journal of Systems Science, 2019, 50, 379-391.	5.5	1
22	A New Design of Membership-Function-Dependent Controller for T-S Fuzzy Systems Under Imperfect Premise Matching. IEEE Transactions on Fuzzy Systems, 2019, 27, 1428-1440.	9.8	30
23	Real-Time Lightweight CNN in Robots with Very Limited Computational Resources: Detecting Ball in NAO. Lecture Notes in Computer Science, 2019, , 24-34.	1.3	1
24	Multi-Layered CPG for Adaptive Walking of Quadruped Robots. Journal of Bionic Engineering, 2018, 15, 341-355.	5.0	26
25	Dynamic walking control of humanoid robots combining linear inverted pendulum mode with parameter optimization. International Journal of Advanced Robotic Systems, 2018, 15, 172988141774967.	2.1	17
26	Visual Recognition of Container Number with Arbitrary Orientations Based on Deep Convolutional Neural Network. , 2018, , .		1
27	Energetic walking gaits studied by a simple actuated inverted pendulum model. Journal of Mechanical Science and Technology, 2018, 32, 2273-2281.	1.5	11
28	Efficient walking gait with different speed and step length: Gait strategies discovered by dynamic optimization of a biped model. Journal of Mechanical Science and Technology, 2017, 31, 1909-1919.	1.5	7
29	Effects of upper body parameters on biped walking efficiency studied by dynamic optimization. International Journal of Advanced Robotic Systems, 2017, 14, 172988141668270.	2.1	2
30	Active balance of humanoid movement based on dynamic task-prior system. International Journal of Advanced Robotic Systems, 2017, 14, 172988141771079.	2.1	3
31	Fuzzy-model-based H <inf>â^ž</inf> dynamic output feedback control with feedforward for autonomous vehicle path tracking. , 2017, , .		4
32	Disturbance rejection based on momentum compensation for humannoid robots. , 2017, , .		0
33	The pitch-reciprocal screw relating a twist and an actuating wrench. , 2016, , .		0
34	A trajectory generation method for biped walking based on neural oscillators. , 2016, , .		4
35	Locomotion control of seven-link robot with CPG-ZMP. , 2016, , .		1
36	Jacobian analysis for lower mobility parallel robots based on actuating wrenches. , 2016, , .		0

3

Chengju Liu

#	Article	IF	CITATIONS
37	Adaptive walking control of biped robots using online trajectory generation method based on neural oscillators. Journal of Bionic Engineering, 2016, 13, 572-584.	5.0	21
38	Rate-position-point hybrid control mode for teleoperation with force feedback. , 2016, , .		3
39	Self-balanced motion planning for humanoid robot based on dynamic multitasking mechanism. , 2016, , .		1
40	Active balance of humanoids with foot positioning compensation and non-parametric adaptation. Robotics and Autonomous Systems, 2016, 75, 297-309.	5.1	6
41	Evolution of neural oscillator network for the biped walking control of a four-link robot. , 2015, , .		1
42	Adaptive walking control of quadruped robots based on central pattern generator (CPG) and reflex. Journal of Control Theory and Applications, 2013, 11, 386-392.	0.8	9
43	Central Pattern Generator Inspired Control for Adaptive Walking of Biped Robots. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43, 1206-1215.	9.3	61
44	Walking control strategy for biped robots based on central pattern generator. , 2012, , .		6
45	Locomotion control of quadruped robots based on central pattern generators. , 2011, , .		3
46	Locomotion control of quadruped robots based on CPG-inspired workspace trajectory generation. , 2011, , .		2
47	CPG-Inspired Workspace Trajectory Generation and Adaptive Locomotion Control for Quadruped Robots. IEEE Transactions on Systems, Man, and Cybernetics, 2011, 41, 867-880.	5.0	120
48	A Vestibular System Model for Robots and Its Application in Environment Perception. , 2010, , .		4
49	CPG driven locomotion control of quadruped robot. , 2009, , .		23
50	Survey of locomotion control of legged robots inspired by biological concept. Science in China Series F: Information Sciences, 2009, 52, 1715-1729.	1.1	60
51	Coupled Van Der Pol oscillators utilised as Central pattern generators for quadruped locomotion. , 2009, , .		9