Monique Gauthier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12174225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subchronic exposure of honeybees to sublethal doses of pesticides: Effects on behavior. Environmental Toxicology and Chemistry, 2009, 28, 113-122.	4.3	260
2	Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pesticide Biochemistry and Physiology, 2004, 78, 83-92.	3.6	221
3	Effects of Sublethal Doses of Acetamiprid and Thiamethoxam on the Behavior of the Honeybee (Apis) Tj ETQq1	1 0.784314 4.1	1 rgBT /Overle
4	The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Research, 2006, 16, 1422-1430.	5.5	153
5	The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neuroscience Letters, 2002, 321, 13-16.	2.1	140
6	Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacology Biochemistry and Behavior, 2005, 82, 30-39.	2.9	138
7	Contrasting Effects of Imidacloprid on Habituation in 7- and 8-Day-Old Honeybees (Apis mellifera). Neurobiology of Learning and Memory, 2001, 76, 183-191.	1.9	115
8	Honeybee tracking with microchips: a new methodology to measure the effects of pesticides. Ecotoxicology, 2011, 20, 429-437.	2.4	105
9	Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 823-836.	1.6	96
10	Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2001, 187, 249-254.	1.6	87
11	State of the Art on Insect Nicotinic Acetylcholine Receptor Function in Learning and Memory. Advances in Experimental Medicine and Biology, 2010, 683, 97-115.	1.6	78
12	Electrophysiological and behavioural characterization of gustatory responses to antennal â€~bitter' taste in honeybees. European Journal of Neuroscience, 2005, 22, 3161-3170.	2.6	77
13	Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains. Invertebrate Neuroscience, 2008, 8, 19-29.	1.8	66
14	Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: From genes to behavioral functions. Neuroscience and Biobehavioral Reviews, 2012, 36, 1553-1564.	6.1	65
15	Mecamylamine-induced impairment of acquisition and retrieval of olfactory conditioning in the honeybee. Behavioural Brain Research, 1996, 81, 215-222.	2.2	50
16	Involvement of α-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiology of Learning and Memory, 2006, 86, 164-174.	1.9	49
17	Glutamatergic and GABAergic effects of fipronil on olfactory learning and memory in the honeybee. Invertebrate Neuroscience, 2009, 9, 91-100.	1.8	47
18	Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera. Brain Research, 2005, 1039, 216-219.	2.2	45

Monique Gauthier

#	Article	IF	CITATIONS
19	Homomeric RDL and Heteromeric RDL/LCCH3 GABA Receptors in the Honeybee Antennal Lobes: Two Candidates for Inhibitory Transmission in Olfactory Processing. Journal of Neurophysiology, 2010, 103, 458-468.	1.8	42
20	Expression patterns of nicotinic subunits α2, α7, α8, and β1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. Journal of Neurophysiology, 2011, 106, 1604-1613.	1.8	40
21	Behavioral studies on tarsal gustation in honeybees: sucrose responsiveness and sucrose-mediated olfactory conditioning. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 861-869.	1.6	39
22	Inhibitory neurotransmission and olfactory memory in honeybees. Neurobiology of Learning and Memory, 2008, 90, 589-595.	1.9	38
23	Effects of intracranial injections of scopolamine on olfactory conditioning retrieval in the honeybee. Behavioural Brain Research, 1994, 63, 145-149.	2.2	36
24	Effects of the Muscarinic Antagonists Atropine and Pirenzepine on Olfactory Conditioning in the Honeybee. Pharmacology Biochemistry and Behavior, 1998, 59, 903-907.	2.9	31
25	Taste perception in honeybees: just a taste of honey?. Arthropod-Plant Interactions, 2007, 1, 69-76.	1.1	29
26	Late post-learning effect of entorhinal cortex electrical stimulation persists despite destruction of the perforant path. Brain Research, 1984, 310, 174-179.	2.2	27
27	Late post-learning participation of entorhinal cortex in memory processes. Brain Research, 1982, 233, 255-264.	2.2	25
28	Behavioral effects of bilateral entorhinal cortex lesions in the balb/c mouse. Behavioral and Neural Biology, 1981, 33, 419-436.	2.2	24
29	Functional cytochrome oxidase histochemistry in the honeybee brain. Brain Research, 2000, 859, 390-393.	2.2	21
30	Regional brain variations of cytochrome oxidase staining during olfactory learning in the honeybee (Apis mellifera) Behavioral Neuroscience, 2003, 117, 540-547.	1.2	21
31	Neurotransmitter Systems in the Honey Bee Brain: Functions in Learning and Memory. , 2012, , 155-169.		21
32	Modulatory effect of learning and memory on honey bee brain acetylcholinesterase activity. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1992, 103, 91-95.	0.2	18
33	Amelα8 subunit knockdown in the mushroom body vertical lobes impairs olfactory retrieval in the honeybee, <i>Apis mellifera</i> . European Journal of Neuroscience, 2012, 36, 3438-3450.	2.6	14
34	Effect of high-frequency radiations on survival of the honeybee (Apis mellifera L.). Apidologie, 2016, 47, 703-710.	2.0	14
35	Antennal movements as indicators of odor detection by worker honeybees. Apidologie, 2005, 36, 119-126.	2.0	12
36	A New Attempt to Assess the Effect of Learning Processes on the Cholinergic System: Studies on Fruitflies and Honeybees. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 119, 349-353.	1.6	10

Monique Gauthier

#	Article	IF	CITATIONS
37	Sequential Intervention of Different Limbic Structures in Memory Processes. Advances in Behavioral Biology, 1985, , 183-192.	0.2	8
38	Dissociation of limbic structures by pharmacological effects of diazepam on electrical self-stimulation in the mouse. Brain Research, 1984, 302, 196-200.	2.2	7
39	Nicotinic acetylcholine receptor ligands differently affect cytochrome oxidase in the Honeybee brain. Neuroscience Letters, 2001, 304, 97-101.	2.1	7
40	Lesion of the temporo-ammonic perforant path facilitates self-stimulation of the lateral entorhinal cortex in mice. Brain Research, 1985, 344, 377-381.	2.2	1
41	Involvement of the Entorhinal Cortex in Memory Processes: Differentiation of Lateral and Medial Parts. Advances in Behavioral Biology, 1985, , 560-560.	0.2	0