Norbert Perrimon

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1217364/norbert-perrimon-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

473	45,813 citations	113	200
papers		h-index	g-index
540 ext. papers	53,747 ext. citations	14.1 avg, IF	7.68 L-index

#	Paper	IF	Citations
473	Protein visualization and manipulation in through the use of epitope tags recognized by nanobodies <i>ELife</i> , 2022 , 11,	8.9	3
472	The Yun/Prohibitin complex regulates adult intestinal stem cell proliferation through the transcription factor E2F1 <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	1
471	A salivary gland-secreted peptide regulates insect systemic growth Cell Reports, 2022, 38, 110397	10.6	1
470	Lysosomal cystine mobilization shapes the response of TORC1 and tissue growth to fasting <i>Science</i> , 2022 , 375, eabc4203	33.3	4
469	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly <i>Science</i> , 2022 , 375, eabk2432	33.3	23
468	Trans-omics analysis of insulin action reveals a cell growth subnetwork which co-regulates anabolic processes <i>IScience</i> , 2022 , 25, 104231	6.1	0
467	Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos. <i>Nature Communications</i> , 2021 , 12, 6825	17.4	O
466	Precise genome engineering in using prime editing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	27
465	FlyBase: updates to the Drosophila melanogaster knowledge base. <i>Nucleic Acids Research</i> , 2021 , 49, D8	9 9 ∂ D 190	07106
464	mTORC1-chaperonin CCT signaling regulates mA RNA methylation to suppress autophagy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	10
463	Methods and tools for spatial mapping of single-cell RNAseq clusters in Drosophila. <i>Genetics</i> , 2021 , 217,	4	5
462	Proteomics of protein trafficking by in vivo tissue-specific labeling. <i>Nature Communications</i> , 2021 , 12, 2382	17.4	13
461	mTORC1 promotes cell growth via mA-dependent mRNA degradation. <i>Molecular Cell</i> , 2021 , 81, 2064-20	07 .5 .68	9
460	Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes. <i>Nature Communications</i> , 2021 , 12, 2960	17.4	8
459	TIMEOR: a web-based tool to uncover temporal regulatory mechanisms from multi-omics data. <i>Nucleic Acids Research</i> , 2021 , 49, W641-W653	20.1	1
458	What fuels the fly: Energy metabolism in and its application to the study of obesity and diabetes. <i>Science Advances</i> , 2021 , 7,	14.3	9
457	FlyRNAi.org-the database of the Drosophila RNAi screening center and transgenic RNAi project: 2021 update. <i>Nucleic Acids Research</i> , 2021 , 49, D908-D915	20.1	8

(2020-2021)

456	Proximity-dependent labeling methods for proteomic profiling in living cells: An update. <i>Wiley Interdisciplinary Reviews: Developmental Biology</i> , 2021 , 10, e392	5.9	16
455	Endonuclease G promotes autophagy by suppressing mTOR signaling and activating the DNA damage response. <i>Nature Communications</i> , 2021 , 12, 476	17.4	13
454	DRscDB: A single-cell RNA-seq resource for data mining and data comparison across species. <i>Computational and Structural Biotechnology Journal</i> , 2021 , 19, 2018-2026	6.8	3
453	Preparation of Larval Blood Cells for Single-cell RNA Sequencing. <i>Bio-protocol</i> , 2021 , 11, e4127	0.9	1
452	Cross-species identification of PIP5K1-, splicing- and ubiquitin-related pathways as potential targets for RB1-deficient cells. <i>PLoS Genetics</i> , 2021 , 17, e1009354	6	1
451	Coordination of tumor growth and host wasting by tumor-derived Upd3. Cell Reports, 2021, 36, 109553	10.6	3
450	Metabolic decisions in development and disease-a Keystone Symposia report. <i>Annals of the New York Academy of Sciences</i> , 2021 ,	6.5	1
449	Defining cell types and lineage in the Drosophila midgut using single cell transcriptomics. <i>Current Opinion in Insect Science</i> , 2021 , 47, 12-17	5.1	4
448	FlyPhoneDB: an integrated web-based resource for cell-cell communication prediction in Drosophila <i>Genetics</i> , 2021 ,	4	2
447	A model of oral peptide therapeutics for adult intestinal stem cell tumors. <i>DMM Disease Models and Mechanisms</i> , 2020 , 13,	4.1	3
446	CG14906 (mettl4) mediates mA methylation of U2 snRNA in. Cell Discovery, 2020, 6, 44	22.3	16
445	as a model for studying cystic fibrosis pathophysiology of the gastrointestinal system. <i>Proceedings</i> of the National Academy of Sciences of the United States of America, 2020 , 117, 10357-10367	11.5	8
444	Large-Scale Transgenic Resource Collections for Loss- and Gain-of-Function Studies. <i>Genetics</i> , 2020 , 214, 755-767	4	20
443	A single-cell survey of blood. <i>ELife</i> , 2020 , 9,	8.9	53
442	Author response: A single-cell survey of Drosophila blood 2020 ,		4
441	PDGF/VEGF signaling from muscles to hepatocyte-like cells protects against obesity. <i>ELife</i> , 2020 , 9,	8.9	13
440	Downregulation of the tyrosine degradation pathway extends lifespan. ELife, 2020, 9,	8.9	7
439	Probe-Seq: Method for RNA Sequencing of Specific Cell Types from Animal Tissue. <i>Bio-protocol</i> , 2020 , 10, e3749	0.9	

438	SNP-CRISPR: A Web Tool for SNP-Specific Genome Editing. G3: Genes, Genomes, Genetics, 2020, 10, 489)-4 <u>9,4</u>	19
437	A cell atlas of the adult midgut. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 1514-1523	11.5	67
436	Gene Knock-Ins in Using Homology-Independent Insertion of Universal Donor Plasmids. <i>Genetics</i> , 2020 , 214, 75-89	4	12
435	Intestinal response to dietary manganese depletion in Drosophila. <i>Metallomics</i> , 2020 , 12, 218-240	4.5	11
434	Use of the CRISPR-Cas9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes. <i>Current Protocols in Molecular Biology</i> , 2020 , 130, e112	2.9	5
433	An in vivo RNAi screen uncovers the role of AdoR signaling and adenosine deaminase in controlling intestinal stem cell activity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 464-471	11.5	5
432	No Evidence that Wnt Ligands Are Required for Planar Cell Polarity in Drosophila. <i>Cell Reports</i> , 2020 , 32, 108121	10.6	17
431	Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. <i>Ageing Research Reviews</i> , 2020 , 64, 101188	12	11
430	BioLitMine: Advanced Mining of Biomedical and Biological Literature About Human Genes and Genes from Major Model Organisms. <i>G3: Genes, Genomes, Genetics</i> , 2020 , 10, 4531-4539	3.2	5
429	Fat Body p53 Regulates Systemic Insulin Signaling and Autophagy under Nutrient Stress via Drosophila Upd2 Repression. <i>Cell Reports</i> , 2020 , 33, 108321	10.6	6
428	Expanding the horizons of genome editing in the fruit fly with Cas12a. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 24019-24021	11.5	
427	CRISPR-based engineering of gene knockout cells by homology-directed insertion in polyploid Drosophila S2R+ cells. <i>Nature Protocols</i> , 2020 , 15, 3478-3498	18.8	1
426	Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila. <i>Nature Communications</i> , 2020 , 11, 4483	17.4	39
425	Alliance of Genome Resources Portal: unified model organism research platform. <i>Nucleic Acids Research</i> , 2020 , 48, D650-D658	20.1	71
424	Regulation of insulin and adipokinetic hormone/glucagon production in flies. <i>Wiley Interdisciplinary Reviews: Developmental Biology</i> , 2020 , 9, e360	5.9	27
423	Apical polarity proteins recruit the RhoGEF Cysts to promote junctional myosin assembly. <i>Journal of Cell Biology</i> , 2019 , 218, 3397-3414	7.3	12
422	HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species. <i>Science Signaling</i> , 2019 , 12,	8.8	25
421	iProteinDB: An Integrative Database of Post-translational Modifications. <i>G3: Genes, Genomes, Genetics</i> , 2019 , 9, 1-11	3.2	10

(2018-2019)

420	An Evolutionarily Conserved uORF Regulates PGC1hand Oxidative Metabolism in Mice, Flies, and Bluefin Tuna. <i>Cell Metabolism</i> , 2019 , 30, 190-200.e6	24.6	19
419	Conserved phosphorylation hotspots in eukaryotic protein domain families. <i>Nature Communications</i> , 2019 , 10, 1977	17.4	18
418	The Multidimensional Organization of Interorgan Communication Networks. <i>Developmental Cell</i> , 2019 , 50, 395-396	10.2	4
417	Interspecies analysis of MYC targets identifies tRNA synthetases as mediators of growth and survival in MYC-overexpressing cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 14614-14619	11.5	10
416	Pooled CRISPR Screens in Drosophila Cells. Current Protocols in Molecular Biology, 2019, 129, e111	2.9	5
415	Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. <i>Aging Cell</i> , 2019 , 18, e13034	9.9	64
414	In vivo study of gene expression with an enhanced dual-color fluorescent transcriptional timer. <i>ELife</i> , 2019 , 8,	8.9	24
413	Probe-Seq enables transcriptional profiling of specific cell types from heterogeneous tissue by RNA-based isolation. <i>ELife</i> , 2019 , 8,	8.9	14
412	An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. <i>ELife</i> , 2019 , 8,	8.9	41
411	Loss of CDK4/6 Activity Is Synthetic Lethal with VHL Inactivation in Clear Cell Renal Cell Carcinoma. <i>FASEB Journal</i> , 2019 , 33, 674.9	0.9	
410	Drosophila as a Model for Tumor-Induced Organ Wasting. <i>Advances in Experimental Medicine and Biology</i> , 2019 , 1167, 191-205	3.6	5
409	A role for actomyosin contractility in Notch signaling. <i>BMC Biology</i> , 2019 , 17, 12	7.3	17
408	The role of translationally controlled tumor protein in proliferation of intestinal stem cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 ,	11.5	8
4 ⁰ 7	Tumor-Derived Ligands Trigger Tumor Growth and Host Wasting via Differential MEK Activation. <i>Developmental Cell</i> , 2019 , 48, 277-286.e6	10.2	24
406	The Septate Junction Protein Tsp2A Restricts Intestinal Stem Cell Activity via Endocytic Regulation of aPKC and Hippo Signaling. <i>Cell Reports</i> , 2019 , 26, 670-688.e6	10.6	27
405	FlyBase 2.0: the next generation. <i>Nucleic Acids Research</i> , 2019 , 47, D759-D765	20.1	429
404	Mechanosensitive channels and their functions in stem cell differentiation. <i>Experimental Cell Research</i> , 2019 , 374, 259-265	4.2	18
403	Next-generation CRISPR/Cas9 transcriptional activation in using flySAM. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 4719-4724	11.5	31

402	Phosphorylation of Beta-3 adrenergic receptor at serine 247 by ERK MAP kinase drives lipolysis in obese adipocytes. <i>Molecular Metabolism</i> , 2018 , 12, 25-38	8.8	39
401	Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. <i>Nature</i> , 2018 , 555, 103-106	50.4	162
400	Molecular Interaction Search Tool (MIST): an integrated resource for mining gene and protein interaction data. <i>Nucleic Acids Research</i> , 2018 , 46, D567-D574	20.1	39
399	Zinc Detoxification: A Functional Genomics and Transcriptomics Analysis in Cultured Cells. <i>G3: Genes, Genomes, Genetics</i> , 2018 , 8, 631-641	3.2	9
398	The TORC1-Regulated CPA Complex Rewires an RNA Processing Network to Drive Autophagy and Metabolic Reprogramming. <i>Cell Metabolism</i> , 2018 , 27, 1040-1054.e8	24.6	28
397	Krppel homolog 1 represses insect ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3960-3965	11.5	50
396	Xio is a component of the sex determination pathway and RNA -methyladenosine methyltransferase complex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3674-3679	11.5	55
395	Understanding cellular signaling and systems biology with precision: A perspective from ultrastructure and organelle studies in the midgut. <i>Current Opinion in Systems Biology</i> , 2018 , 11, 24-31	3.2	4
394	Functional Genomics Screens in Drosophila Cells 2018 , 165-191		
393	CRISPR-Based Perturbation of Gene Function in Drosophila Cells 2018 , 193-206		
392	Efficient proximity labeling in living cells and organisms with TurboID. <i>Nature Biotechnology</i> , 2018 , 36, 880-887	44.5	448
391	Blocking p62-dependent SMN degradation ameliorates spinal muscular atrophy disease phenotypes. <i>Journal of Clinical Investigation</i> , 2018 , 128, 3008-3023	15.9	16
390	Pooled genome-wide CRISPR screening for basal and context-specific fitness gene essentiality in cells. <i>ELife</i> , 2018 , 7,	8.9	36
389	intestinal stem and progenitor cells are major sources and regulators of homeostatic niche signals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12218-12223	3 ^{11.5}	40
388	Intestinal Stem Cells Exhibit Conditional Circadian Clock Function. Stem Cell Reports, 2018, 11, 1287-130	018	21
387	Endocrine Regulation of Energy Balance by Drosophila TGF-[Activins. <i>BioEssays</i> , 2018 , 40, e1800044	4.1	3
386	A Membrane Transporter Is Required for Steroid Hormone Uptake in Drosophila. <i>Developmental Cell</i> , 2018 , 47, 294-305.e7	10.2	57

384	A gene-specific library for. <i>ELife</i> , 2018 , 7,	8.9	85
383	Midgut-Derived Activin Regulates Glucagon-like Action in the Fat Body and Glycemic Control. <i>Cell Metabolism</i> , 2017 , 25, 386-399	24.6	74
382	eUnaG: a new ligand-inducible fluorescent reporter to detect drug transporter activity in live cells. <i>Scientific Reports</i> , 2017 , 7, 41619	4.9	11
381	Thermogenesis by THADA. <i>Developmental Cell</i> , 2017 , 41, 1-2	10.2	7
380	Proximity-dependent labeling methods for proteomic profiling in living cells. <i>Wiley Interdisciplinary Reviews: Developmental Biology</i> , 2017 , 6, e272	5.9	35
379	An Evolutionarily Conserved Role of Presenilin in Neuronal Protection in the Aging Brain. <i>Genetics</i> , 2017 , 206, 1479-1493	4	8
378	Development of an optimized synthetic Notch receptor as an in vivo cell-cell contact sensor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5467-5472	11.5	11
377	MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome. <i>American Journal of Human Genetics</i> , 2017 , 100, 843-853	11	104
376	miR-263a Regulates ENaC to Maintain Osmotic and Intestinal Stem Cell Homeostasis in Drosophila. <i>Developmental Cell</i> , 2017 , 40, 23-36	10.2	20
375	FlyRNAi.org-the database of the Drosophila RNAi screening center and transgenic RNAi project: 2017 update. <i>Nucleic Acids Research</i> , 2017 , 45, D672-D678	20.1	31
374	A Mechanism Coupling Systemic Energy Sensing to Adipokine Secretion. <i>Developmental Cell</i> , 2017 , 43, 83-98.e6	10.2	20
373	Accessing the Phenotype Gap: Enabling Systematic Investigation of Paralog Functional Complexity with CRISPR. <i>Developmental Cell</i> , 2017 , 43, 6-9	10.2	23
372	mTORC1 Couples Nucleotide Synthesis to Nucleotide Demand Resulting in a Targetable Metabolic Vulnerability. <i>Cancer Cell</i> , 2017 , 32, 624-638.e5	24.3	73
371	Synthetic Lethality Screens Using RNAi in Combination with CRISPR-based Knockout in Cells. <i>Bio-protocol</i> , 2017 , 7,	0.9	8
370	Proteomic and Metabolomic Characterization of a Mammalian Cellular Transition from Quiescence to Proliferation. <i>Cell Reports</i> , 2017 , 20, 721-736	10.6	25
369	Optimized strategy for in vivo Cas9-activation in. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 9409-9414	11.5	41
368	The Drosophila Gene Expression Tool (DGET) for expression analyses. <i>BMC Bioinformatics</i> , 2017 , 18, 98	3.6	26
367	Open questions: completing the parts list and finding the integrating signals. <i>BMC Biology</i> , 2017 , 15, 47	7.3	2

366	Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. <i>Nature Reviews Genetics</i> , 2017 , 18, 24-40	30.1	113
365	Improved detection of synthetic lethal interactions in cells using variable dose analysis (VDA). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E10755-E10	762.5	7
364	Gene2Function: An Integrated Online Resource for Gene Function Discovery. <i>G3: Genes, Genomes, Genetics</i> , 2017 , 7, 2855-2858	3.2	15
363	Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca signaling in the midgut. <i>ELife</i> , 2017 , 6,	8.9	46
362	Author response: Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca2+ signaling in the Drosophila midgut 2017 ,		2
361	Activin signaling mediates muscle-to-adipose communication in a mitochondria dysfunction-associated obesity model. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 8596-8601	11.5	32
360	Mapping signaling pathway cross-talk in Drosophila cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 9940-5	11.5	25
359	An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling. <i>Cell Reports</i> , 2016 , 16, 3062-3074	10.6	44
358	A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2. <i>Scientific Reports</i> , 2016 , 6, 20471	4.9	30
357	Comparing CRISPR and RNAi-based screening technologies. <i>Nature Biotechnology</i> , 2016 , 34, 621-3	44.5	24
356	Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and life span in Drosophila. <i>Genes and Development</i> , 2016 , 30, 1409-22	12.6	51
355	Wildtype adult stem cells, unlike tumor cells, are resistant to cellular damages in Drosophila. <i>Developmental Biology</i> , 2016 , 411, 207-216	3.1	19
354	miR-190 Enhances HIF-Dependent Responses to Hypoxia in Drosophila by Inhibiting the Prolyl-4-hydroxylase Fatiga. <i>PLoS Genetics</i> , 2016 , 12, e1006073	6	20
353	The postsynaptic t-SNARE Syntaxin 4 controls traffic of Neuroligin 1 and Synaptotagmin 4 to regulate retrograde signaling. <i>ELife</i> , 2016 , 5,	8.9	24
352	Seipin is required for converting nascent to mature lipid droplets. <i>ELife</i> , 2016 , 5,	8.9	196
351	CRISPR guide RNA design for research applications. <i>FEBS Journal</i> , 2016 , 283, 3232-8	5.7	56
350	Coordinated control of Notch/Delta signalling and cell cycle progression drives lateral inhibition-mediated tissue patterning. <i>Development (Cambridge)</i> , 2016 , 143, 2305-10	6.6	24
349	Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. <i>Pediatric Neurology</i> , 2016 , 60, 1-12	2.9	34

348	Comparison of Cas9 activators in multiple species. <i>Nature Methods</i> , 2016 , 13, 563-567	21.6	308
347	Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 4976-81	11.5	155
346	Cas9-Mediated Genome Engineering in Drosophila melanogaster. <i>Cold Spring Harbor Protocols</i> , 2016 , 2016,	1.2	16
345	Design and Generation of Drosophila Single Guide RNA Expression Constructs. <i>Cold Spring Harbor Protocols</i> , 2016 , 2016,	1.2	11
344	Design and Generation of Donor Constructs for Genome Engineering in Drosophila. <i>Cold Spring Harbor Protocols</i> , 2016 , 2016,	1.2	11
343	Detection of Indel Mutations in Drosophila by High-Resolution Melt Analysis (HRMA). <i>Cold Spring Harbor Protocols</i> , 2016 , 2016,	1.2	10
342	Toward a Systems Understanding of Signaling Pathway Function. <i>Current Topics in Developmental Biology</i> , 2016 , 117, 221-36	5.3	1
341	Interorgan Communication Pathways in Physiology: Focus on Drosophila. <i>Annual Review of Genetics</i> , 2016 , 50, 539-570	14.5	103
340	Oncogenic transformation of Drosophila somatic cells induces a functional piRNA pathway. <i>Genes and Development</i> , 2016 , 30, 1623-35	12.6	29
339	Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 1761-6	11.5	111
338	BIOSAFETY. Safeguarding gene drive experiments in the laboratory. <i>Science</i> , 2015 , 349, 927-9	33.3	215
337	A systems-level interrogation identifies regulators of Drosophila blood cell number and survival. <i>PLoS Genetics</i> , 2015 , 11, e1005056	6	12
336	Regulators of autophagosome formation in Drosophila muscles. <i>PLoS Genetics</i> , 2015 , 11, e1005006	6	18
335	Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. <i>Developmental Cell</i> , 2015 , 33, 36-46	10.2	140
334	Highly efficient Cas9-mediated transcriptional programming. <i>Nature Methods</i> , 2015 , 12, 326-8	21.6	856
333	In Vivo Transcriptional Activation Using CRISPR/Cas9 in Drosophila. <i>Genetics</i> , 2015 , 201, 433-42	4	83
332	A transgenic resource for conditional competitive inhibition of conserved Drosophila microRNAs. <i>Nature Communications</i> , 2015 , 6, 7279	17.4	44
331	Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 12974-9	11.5	16

330	Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. <i>Science Signaling</i> , 2015 , 8, rs9	8.8	86
329	Stress signaling between organs in metazoa. <i>Annual Review of Cell and Developmental Biology</i> , 2015 , 31, 497-522	12.6	28
328	Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12093-8	11.5	93
327	Reagent and Data Resources for Investigation of RNA Binding Protein Functions in Drosophila melanogaster Cultured Cells. <i>G3: Genes, Genomes, Genetics</i> , 2015 , 5, 1919-24	3.2	6
326	GLAD: an Online Database of Gene List Annotation for Drosophila. <i>Journal of Genomics</i> , 2015 , 3, 75-81	0.9	37
325	Mechanical Allostery: Evidence for a Force Requirement in the Proteolytic Activation of Notch. <i>Developmental Cell</i> , 2015 , 33, 729-36	10.2	184
324	The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. <i>Genetics</i> , 2015 , 201, 843-52	4	268
323	spenito is required for sex determination in Drosophila melanogaster. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11606-11	11.5	29
322	Stable Force Balance between Epithelial Cells Arises from F-Actin Turnover. <i>Developmental Cell</i> , 2015 , 35, 685-97	10.2	65
321	The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos. <i>Development (Cambridge)</i> , 2015 , 142, 3869-78	6.6	17
320	The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos. <i>Journal of Cell Science</i> , 2015 , 128, e1.1-e1.1	5.3	
319	Diversity and dynamics of the Drosophila transcriptome. <i>Nature</i> , 2014 , 512, 393-9	50.4	418
318	A regulatory network of Drosophila germline stem cell self-renewal. <i>Developmental Cell</i> , 2014 , 28, 459-	73 0.2	95
317	Mechanisms of muscle growth and atrophy in mammals and Drosophila. <i>Developmental Dynamics</i> , 2014 , 243, 201-15	2.9	90
316	Integrating protein-protein interaction networks with phenotypes reveals signs of interactions. <i>Nature Methods</i> , 2014 , 11, 94-9	21.6	92
315	Resources for functional genomics studies in Drosophila melanogaster. <i>Genetics</i> , 2014 , 197, 1-18	4	53
314	Comparative analysis of the transcriptome across distant species. <i>Nature</i> , 2014 , 512, 445-8	50.4	207
313	Functional screening in Drosophila identifies Alzheimer's disease susceptibility genes and implicates Tau-mediated mechanisms. <i>Human Molecular Genetics</i> , 2014 , 23, 870-7	5.6	113

312	Systematic screen of chemotherapeutics in Drosophila stem cell tumors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 4530-5	11.5	79
311	RNAi screening comes of age: improved techniques and complementary approaches. <i>Nature Reviews Molecular Cell Biology</i> , 2014 , 15, 591-600	48.7	241
310	Online GESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis. <i>BMC Bioinformatics</i> , 2014 , 15, 192	3.6	27
309	Combining genetic perturbations and proteomics to examine kinase-phosphatase networks in Drosophila embryos. <i>Developmental Cell</i> , 2014 , 31, 114-27	10.2	42
308	Spatial and temporal organization of signaling pathways. <i>Trends in Biochemical Sciences</i> , 2014 , 39, 457-	64 0.3	41
307	Inducing RNAi in Drosophila cells by soaking with dsRNA. Cold Spring Harbor Protocols, 2014, 2014,	1.2	5
306	Intertissue control of the nucleolus via a myokine-dependent longevity pathway. <i>Cell Reports</i> , 2014 , 7, 1481-1494	10.6	76
305	Drosophila as a model for context-dependent tumorigenesis. <i>Journal of Cellular Physiology</i> , 2014 , 229, 27-33	7	42
304	A rapid genome-wide microRNA screen identifies miR-14 as a modulator of Hedgehog signaling. <i>Cell Reports</i> , 2014 , 7, 2066-77	10.6	26
303	Control of lipid metabolism by tachykinin in Drosophila. <i>Cell Reports</i> , 2014 , 9, 40-47	10.6	118
302	Cas9-based genome editing in Drosophila. <i>Methods in Enzymology</i> , 2014 , 546, 415-39	1.7	28
301	Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases. <i>DMM Disease Models and Mechanisms</i> , 2014 , 7, 343-50	4.1	106
300	Genetic odyssey to generate marked clones in Drosophila mosaics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 4756-63	11.5	30
299	A sharp end to sugary Wingless travels. <i>Journal of Cell Biology</i> , 2014 , 206, 819-21	7-3	
298	Visualizing and manipulating temporal signaling dynamics with fluorescence-based tools. <i>Science Signaling</i> , 2014 , 7, re1	8.8	24
297	Enteroendocrine cells support intestinal stem-cell-mediated homeostasis in Drosophila. <i>Cell Reports</i> , 2014 , 9, 32-39	10.6	79
296	Of flies and men: insights on organismal metabolism from fruit flies. <i>BMC Biology</i> , 2013 , 11, 38	7.3	61
295	The influence of skeletal muscle on systemic aging and lifespan. <i>Aging Cell</i> , 2013 , 12, 943-9	9.9	137

294	Depleting gene activities in early Drosophila embryos with the "maternal-Gal4-shRNA" system. <i>Genetics</i> , 2013 , 193, 51-61	4	63
293	The circadian clock gates the intestinal stem cell regenerative state. <i>Cell Reports</i> , 2013 , 3, 996-1004	10.6	90
292	UP-TORR: online tool for accurate and Up-to-Date annotation of RNAi Reagents. <i>Genetics</i> , 2013 , 195, 37-45	4	35
291	Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. <i>Cell</i> , 2013 , 155, 699-712	56.2	258
290	The homeobox transcription factor cut coordinates patterning and growth during Drosophila airway remodeling. <i>Science Signaling</i> , 2013 , 6, ra12	8.8	21
289	Analyzing the Structure, Function and Information Flow in Signaling Networks using Quantitative Cellular Signatures 2013 , 89-113		1
288	Inducing RNAi in Drosophila cells by transfection with dsRNA. <i>Cold Spring Harbor Protocols</i> , 2013 , 2013, 461-3	1.2	15
287	Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models. <i>DMM Disease Models and Mechanisms</i> , 2013 , 6, 1339-52	4.1	153
286	Ecdysone signaling at metamorphosis triggers apoptosis of Drosophila abdominal muscles. <i>Developmental Biology</i> , 2013 , 383, 275-84	3.1	29
285	Receptor tyrosine kinases in Drosophila development. <i>Cold Spring Harbor Perspectives in Biology</i> , 2013 , 5,	10.2	40
284	The Hippo signaling pathway interactome. <i>Science</i> , 2013 , 342, 737-40	33.3	117
283	Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer. <i>Cancer Cell</i> , 2013 , 23, 390-405	24.3	97
282	Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 19012-7	11.5	258
281	PPIRank - an advanced method for ranking protein-protein interations in TAP/MS data. <i>Proteome Science</i> , 2013 , 11, S16	2.6	4
280	Conserved regulators of nucleolar size revealed by global phenotypic analyses. <i>Science Signaling</i> , 2013 , 6, ra70	8.8	52
279	PAPTi: a peptide aptamer interference toolkit for perturbation of protein-protein interaction networks. <i>Scientific Reports</i> , 2013 , 3, 1156	4.9	23
278	Protein complex-based analysis framework for high-throughput data sets. <i>Science Signaling</i> , 2013 , 6, rs5	8.8	75
277	Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. <i>PLoS Biology</i> , 2013 , 11, e1001708	9.7	70

(2011-2013)

276	FlyPrimerBank: an online database for Drosophila melanogaster gene expression analysis and knockdown evaluation of RNAi reagents. <i>G3: Genes, Genomes, Genetics</i> , 2013 , 3, 1607-16	3.2	89
275	Core small nuclear ribonucleoprotein particle splicing factor SmD1 modulates RNA interference in Drosophila. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 16520-5	11.5	17
274	Defining the interorgan communication network: systemic coordination of organismal cellular processes under homeostasis and localized stress. <i>Frontiers in Cellular and Infection Microbiology</i> , 2013 , 3, 82	5.9	22
273	A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes. <i>Nature Cell Biology</i> , 2013 , 15, 860-71	23.4	124
272	Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 10270-5	11.5	60
271	Genetic determinants of phosphate response in Drosophila. <i>PLoS ONE</i> , 2013 , 8, e56753	3.7	10
270	A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. <i>Development (Cambridge)</i> , 2012 , 139, 2821-31	6.6	72
269	Signaling mechanisms controlling cell fate and embryonic patterning. <i>Cold Spring Harbor Perspectives in Biology</i> , 2012 , 4, a005975	10.2	222
268	Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. <i>Cell</i> , 2012 , 151, 123-37	56.2	318
267	Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster. <i>Cell Metabolism</i> , 2012 , 16, 97-103	24.6	118
266	Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. <i>Molecular Cell</i> , 2012 , 48, 28-38	17.6	155
265	A computational framework for boosting confidence in high-throughput protein-protein interaction datasets. <i>Genome Biology</i> , 2012 , 13, R76	18.3	35
264	Roles of major facilitator superfamily transporters in phosphate response in Drosophila. <i>PLoS ONE</i> , 2012 , 7, e31730	3.7	16
263	RNAi screening: new approaches, understandings, and organisms. <i>Wiley Interdisciplinary Reviews RNA</i> , 2012 , 3, 145-58	9.3	105
262	FlyRNAi.orgthe database of the Drosophila RNAi screening center: 2012 update. <i>Nucleic Acids Research</i> , 2012 , 40, D715-9	20.1	43
261	Stringent analysis of gene function and protein-protein interactions using fluorescently tagged genes. <i>Genetics</i> , 2012 , 190, 931-40	4	66
260	Drosophila heparan sulfate, a novel design. <i>Journal of Biological Chemistry</i> , 2012 , 287, 21950-6	5.4	15
259	Control of the mitotic cleavage plane by local epithelial topology. <i>Cell</i> , 2011 , 144, 427-38	56.2	153

258	Drosophila as a model for interorgan communication: lessons from studies on energy homeostasis. Developmental Cell, 2011 , 21, 29-31	10.2	57
257	Primary cell cultures from Drosophila gastrula embryos. Journal of Visualized Experiments, 2011,	1.6	9
256	A genome-scale shRNA resource for transgenic RNAi in Drosophila. <i>Nature Methods</i> , 2011 , 8, 405-7	21.6	558
255	The developmental transcriptome of Drosophila melanogaster. <i>Nature</i> , 2011 , 471, 473-9	50.4	1094
254	Identification of adult midgut precursors in Drosophila. <i>Gene Expression Patterns</i> , 2011 , 11, 12-21	1.5	35
253	An integrative approach to ortholog prediction for disease-focused and other functional studies. <i>BMC Bioinformatics</i> , 2011 , 12, 357	3.6	362
252	False negative rates in Drosophila cell-based RNAi screens: a case study. <i>BMC Genomics</i> , 2011 , 12, 50	4.5	36
251	Where gene discovery turns into systems biology: genome-scale RNAi screens in Drosophila. <i>Wiley Interdisciplinary Reviews: Systems Biology and Medicine</i> , 2011 , 3, 471-8	6.6	9
250	Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. <i>Genome Research</i> , 2011 , 21, 203-15	9.7	185
249	Expanded polyglutamine domain possesses nuclear export activity which modulates subcellular localization and toxicity of polyQ disease protein via exportin-1. <i>Human Molecular Genetics</i> , 2011 , 20, 1738-50	5.6	31
248	Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype. <i>Journal of Cell Biology</i> , 2011 , 194, 789-805	7.3	50
247	Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling. <i>Science Signaling</i> , 2011 , 4, rs10	8.8	68
246	A genome-wide RNAi screen identifies core components of the GEM DNA damage checkpoint. <i>Science Signaling</i> , 2011 , 4, rs1	8.8	44
245	The transcriptional diversity of 25 Drosophila cell lines. <i>Genome Research</i> , 2011 , 21, 301-14	9.7	171
244	Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. <i>Genome Research</i> , 2011 , 21, 1395-403	9.7	102
243	Intersecting High-Throughput Screens Identifies SERCA As a Target for Modulating NOTCH1 In Hematopoietic Malignancies. <i>Blood</i> , 2011 , 118, 555-555	2.2	
242	The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. <i>Development</i> (Cambridge), 2010 , 137, 4135-45	6.6	243
241	Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis. <i>Development (Cambridge)</i> , 2010 , 137, 3615-24	6.6	37

(2009-2010)

240	A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila. <i>Genetics</i> , 2010 , 184, 1165-79	4	101
239	In vivo RNAi: today and tomorrow. <i>Cold Spring Harbor Perspectives in Biology</i> , 2010 , 2, a003640	10.2	142
238	Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3'UTRs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 15751-6	11.5	113
237	Dynamic switch of negative feedback regulation in Drosophila Akt-TOR signaling. <i>PLoS Genetics</i> , 2010 , 6, e1000990	6	51
236	Sarcomere formation occurs by the assembly of multiple latent protein complexes. <i>PLoS Genetics</i> , 2010 , 6, e1001208	6	62
235	Inference of RhoGAP/GTPase regulation using single-cell morphological data from a combinatorial RNAi screen. <i>Genome Research</i> , 2010 , 20, 372-80	9.7	23
234	Identification of functional elements and regulatory circuits by Drosophila modENCODE. <i>Science</i> , 2010 , 330, 1787-97	33.3	892
233	Realizing the promise of RNAi high throughput screening. <i>Developmental Cell</i> , 2010 , 18, 506-7	10.2	6
232	FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. <i>Cell</i> , 2010 , 143, 813-25	56.2	429
231	Steroids make you bigger? Fat chance says Myc. <i>Cell Metabolism</i> , 2010 , 12, 7-9	24.6	1
231	Steroids make you bigger? Fat chance says Myc. <i>Cell Metabolism</i> , 2010 , 12, 7-9 Genomic screening with RNAi: results and challenges. <i>Annual Review of Biochemistry</i> , 2010 , 79, 37-64	24.6	229
230	Genomic screening with RNAi: results and challenges. <i>Annual Review of Biochemistry</i> , 2010 , 79, 37-64	29.1	229
230	Genomic screening with RNAi: results and challenges. <i>Annual Review of Biochemistry</i> , 2010 , 79, 37-64 Drosophila as a model system to study autophagy. <i>Seminars in Immunopathology</i> , 2010 , 32, 363-72 The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. <i>Journal of Cell</i>	29.1	229 35
230	Genomic screening with RNAi: results and challenges. <i>Annual Review of Biochemistry</i> , 2010 , 79, 37-64 Drosophila as a model system to study autophagy. <i>Seminars in Immunopathology</i> , 2010 , 32, 363-72 The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. <i>Journal of Cell Science</i> , 2010 , 123, e1-e1	29.1	229 35 1
230 229 228 227	Genomic screening with RNAi: results and challenges. <i>Annual Review of Biochemistry</i> , 2010 , 79, 37-64 Drosophila as a model system to study autophagy. <i>Seminars in Immunopathology</i> , 2010 , 32, 363-72 The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. <i>Journal of Cell Science</i> , 2010 , 123, e1-e1 A genome-wide gene function prediction resource for Drosophila melanogaster. <i>PLoS ONE</i> , 2010 , 5, e1 All for one, and one for all: the clonality of the intestinal stem cell niche. <i>F1000 Biology Reports</i> ,	29.1	229 35 1
230 229 228 227 226	Genomic screening with RNAi: results and challenges. <i>Annual Review of Biochemistry</i> , 2010 , 79, 37-64 Drosophila as a model system to study autophagy. <i>Seminars in Immunopathology</i> , 2010 , 32, 363-72 The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. <i>Journal of Cell Science</i> , 2010 , 123, e1-e1 A genome-wide gene function prediction resource for Drosophila melanogaster. <i>PLoS ONE</i> , 2010 , 5, e1 All for one, and one for all: the clonality of the intestinal stem cell niche. <i>F1000 Biology Reports</i> , 2010 , 2, 73 Mesoscopic fluorescence tomography for in-vivo imaging of developing Drosophila. <i>Journal of</i>	29.1 12 5·3 2339	229 35 1 16 7

222	Cross-species RNAi rescue platform in Drosophila melanogaster. <i>Genetics</i> , 2009 , 183, 1165-73	4	37
221	Inactivation of Drosophila Huntingtin affects long-term adult functioning and the pathogenesis of a Huntington's disease model. <i>DMM Disease Models and Mechanisms</i> , 2009 , 2, 247-66	4.1	65
220	Processing of Drosophila endo-siRNAs depends on a specific Loquacious isoform. <i>Rna</i> , 2009 , 15, 1886-9	5 5.8	76
219	Integration of Insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila. <i>Development (Cambridge)</i> , 2009 , 136, 983-93	6.6	124
218	A Drosophila resource of transgenic RNAi lines for neurogenetics. <i>Genetics</i> , 2009 , 182, 1089-100	4	243
217	An image score inference system for RNAi genome-wide screening based on fuzzy mixture regression modeling. <i>Journal of Biomedical Informatics</i> , 2009 , 42, 32-40	10.2	11
216	The twin spot generator for differential Drosophila lineage analysis. <i>Nature Methods</i> , 2009 , 6, 600-2	21.6	52
215	RNAiCut: automated detection of significant genes from functional genomic screens. <i>Nature Methods</i> , 2009 , 6, 476-7	21.6	23
214	Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. <i>Nature Photonics</i> , 2009 , 3, 412-417	33.9	492
213	Culture of Drosophila primary cells dissociated from gastrula embryos and their use in RNAi screening. <i>Nature Protocols</i> , 2009 , 4, 1502-12	18.8	32
212	Homeostasis in infected epithelia: stem cells take the lead. Cell Host and Microbe, 2009, 6, 301-7	23.4	37
211	Hierarchical rules for Argonaute loading in Drosophila. <i>Molecular Cell</i> , 2009 , 36, 445-56	17.6	212
210	Use of a label-free quantitative platform based on MS/MS average TIC to calculate dynamics of protein complexes in insulin signaling. <i>Journal of Biomolecular Techniques</i> , 2009 , 20, 272-7	1.1	6
209	An endogenous small interfering RNA pathway in Drosophila. <i>Nature</i> , 2008 , 453, 798-802	50.4	542
208	Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. <i>Nature Genetics</i> , 2008 , 40, 476-83	36.3	381
207	Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nature Methods, 2008 , 5, 49-51	21.6	207
206	In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography. <i>Nature Methods</i> , 2008 , 5, 45-7	21.6	85
205	Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens. <i>BMC Bioinformatics</i> , 2008 , 9, 264	3.6	38

(2007-2008)

204	Comparative analysis of argonaute-dependent small RNA pathways in Drosophila. <i>Molecular Cell</i> , 2008 , 32, 592-9	17.6	106
203	Phosphorylation networks regulating JNK activity in diverse genetic backgrounds. <i>Science</i> , 2008 , 322, 453-6	33.3	98
202	Hedgehog and Wingless stabilize but do not induce cell fate during Drosophila dorsal embryonic epidermal patterning. <i>Development (Cambridge)</i> , 2008 , 135, 2767-75	6.6	8
201	RNA interference screening in Drosophila primary cells for genes involved in muscle assembly and maintenance. <i>Development (Cambridge)</i> , 2008 , 135, 1439-49	6.6	56
200	ESCRT factors restrict mycobacterial growth. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 3070-5	11.5	65
199	Identification of neural outgrowth genes using genome-wide RNAi. PLoS Genetics, 2008, 4, e1000111	6	77
198	Cellular phenotype recognition for high-content RNA interference genome-wide screening. <i>Journal of Biomolecular Screening</i> , 2008 , 13, 29-39		52
197	High-Resolution Modeling of Cellular Signaling Networks 2008 , 257-271		2
196	Quantitative morphological signatures define local signaling networks regulating cell morphology. <i>Science</i> , 2007 , 316, 1753-6	33.3	238
195	Design and implementation of high-throughput RNAi screens in cultured Drosophila cells. <i>Nature Protocols</i> , 2007 , 2, 2245-64	18.8	93
194	Drosophila and the genetics of the internal milieu. <i>Nature</i> , 2007 , 450, 186-8	50.4	140
193	Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens. <i>Drug Discovery Today</i> , 2007 , 12, 28-33	8.8	38
192	GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. <i>Gene Expression Patterns</i> , 2007 , 7, 323-31	1.5	261
191	Intelligent Interfaces for Mining Large-Scale RNAi-HCS Image Databases. <i>Proceedings IEEE International Symposium on Bioinformatics and Bioengineering</i> , 2007 , 2007, 1333-1337	1	7
190	A genome-wide RNA interference screen identifies putative chromatin regulators essential for E2F repression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 9381-6	11.5	52
189	Online Phenotype Discovery in High-Content RNAi Screens using Gap Statistics. <i>AIP Conference Proceedings</i> , 2007 ,	0	1
188	Matter arising: off-targets and genome-scale RNAi screens in Drosophila. Fly, 2007, 1, 1-5	1.3	28
187	Applications of high-throughput RNA interference screens to problems in cell and developmental biology. <i>Genetics</i> , 2007 , 175, 7-16	4	83

186	Genetic screening for signal transduction in the era of network biology. Cell, 2007, 128, 225-31	56.2	145
185	SALS, a WH2-domain-containing protein, promotes sarcomeric actin filament elongation from pointed ends during Drosophila muscle growth. <i>Developmental Cell</i> , 2007 , 13, 828-42	10.2	55
184	A case study of the reproducibility of transcriptional reporter cell-based RNAi screens in Drosophila. <i>Genome Biology</i> , 2007 , 8, R203	18.3	31
183	Functional screening identifies miR-315 as a potent activator of Wingless signaling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 18151-6	11.5	76
182	Mutational analysis reveals separable DNA binding and trans-activation of Drosophila STAT92E. <i>Cellular Signalling</i> , 2006 , 18, 819-29	4.9	27
181	Weckle is a zinc finger adaptor of the toll pathway in dorsoventral patterning of the Drosophila embryo. <i>Current Biology</i> , 2006 , 16, 1183-93	6.3	25
180	FlyRNAi: the Drosophila RNAi screening center database. <i>Nucleic Acids Research</i> , 2006 , 34, D489-94	20.1	72
179	COPI activity coupled with fatty acid biosynthesis is required for viral replication. <i>PLoS Pathogens</i> , 2006 , 2, e102	7.6	104
178	Segmentation of Drosophila RNAI Fluorescence Images Using Level Sets 2006,		18
177	High-throughput approaches to dissecting MAPK signaling pathways. <i>Methods</i> , 2006 , 40, 262-71	4.6	23
176	Drosophila genome-wide RNAi screens: are they delivering the promise?. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2006 , 71, 141-8	3.9	20
175	Minimizing the risk of reporting false positives in large-scale RNAi screens. <i>Nature Methods</i> , 2006 , 3, 77	7 <i>2</i> 91.6	362
174	Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. <i>Nature Methods</i> , 2006 , 3, 833-8	21.6	222
173	High-throughput RNAi screening in cultured cells: a user's guide. <i>Nature Reviews Genetics</i> , 2006 , 7, 373-	8 9 0.1	304
172	Evidence that stem cells reside in the adult Drosophila midgut epithelium. <i>Nature</i> , 2006 , 439, 475-9	50.4	793
171	Functional genomics reveals genes involved in protein secretion and Golgi organization. <i>Nature</i> , 2006 , 439, 604-7	50.4	276
170	The emergence of geometric order in proliferating metazoan epithelia. <i>Nature</i> , 2006 , 442, 1038-41	50.4	311
169	A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. <i>Nature</i> , 2006 , 444, 230-4	50.4	183

(2004-2005)

168	Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. <i>Genes and Development</i> , 2005 , 19, 1861-70	12.6	174
167	Super-size flies. <i>Cell Metabolism</i> , 2005 , 1, 288-90	24.6	7
166	BMP signaling is required for controlling somatic stem cell self-renewal in the Drosophila ovary. <i>Developmental Cell</i> , 2005 , 9, 651-62	10.2	74
165	Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. <i>Science</i> , 2005 , 309, 1251-3	33.3	307
164	A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. <i>Nature Genetics</i> , 2005 , 37, 1323-32	36.3	159
163	Heparan sulphate proteoglycans: the sweet side of development. <i>Nature Reviews Molecular Cell Biology</i> , 2005 , 6, 530-41	48.7	540
162	Norbert Perrimon. Current Biology, 2005, 15, R481-2	6.3	
161	High-throughput RNA interference screens in Drosophila tissue culture cells. <i>Methods in Enzymology</i> , 2005 , 392, 55-73	1.7	59
160	Functional genomic analysis of the Wnt-wingless signaling pathway. <i>Science</i> , 2005 , 308, 826-33	33.3	294
159	Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity. <i>Development (Cambridge)</i> , 2005 , 132, 1819-30	6.6	156
158	Genome-wide RNAi screen for host factors required for intracellular bacterial infection. <i>Science</i> , 2005 , 309, 1248-51	33.3	250
157	Extrusion and death of DPP/BMP-compromised epithelial cells in the developing Drosophila wing. <i>Science</i> , 2005 , 307, 1785-9	33.3	154
156	Function of the ETS transcription factor Yan in border cell migration. <i>Development (Cambridge)</i> , 2005 , 132, 3493-504	6.6	37
155	Drosophila Wnt/Fz pathways. <i>Science Signaling</i> , 2005 , 2005, cm5	8.8	6
154	Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. <i>Genes and Development</i> , 2005 , 19, 445-52	12.6	175
153	Wingless, hedgehog and heparan sulfate proteoglycans. <i>Development (Cambridge)</i> , 2004 , 131, 2509-11; author reply 2511-3	6.6	30
152	Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. <i>PLoS Biology</i> , 2004 , 2, e379	9.7	252
151	The roles of JAK/STAT signaling in Drosophila immune responses. <i>Immunological Reviews</i> , 2004 , 198, 72-82	11.3	263

150	Temperature-sensitive control of protein activity by conditionally splicing inteins. <i>Nature Biotechnology</i> , 2004 , 22, 871-6	44.5	142
149	Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. <i>Nature Immunology</i> , 2004 , 5, 81-7	19.1	94
148	Using RNAi to catch Drosophila genes in a web of interactions: insights into cancer research. <i>Oncogene</i> , 2004 , 23, 8359-65	9.2	41
147	The PDGF/VEGF receptor controls blood cell survival in Drosophila. <i>Developmental Cell</i> , 2004 , 7, 73-84	10.2	197
146	Small wing PLCgamma is required for ER retention of cleaved Spitz during eye development in Drosophila. <i>Developmental Cell</i> , 2004 , 7, 535-45	10.2	37
145	Genome-wide high-throughput screens in functional genomics. <i>Current Opinion in Genetics and Development</i> , 2004 , 14, 470-6	4.9	41
144	Yantar, a conserved arginine-rich protein is involved in Drosophila hemocyte development. <i>Developmental Biology</i> , 2004 , 273, 48-62	3.1	30
143	The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors. <i>Developmental Biology</i> , 2004 , 276, 89-100	3.1	95
142	Genome-wide RNAi analysis of growth and viability in Drosophila cells. <i>Science</i> , 2004 , 303, 832-5	33.3	611
141	Retraction of the Drosophila germ band requires cell-matrix interaction. <i>Genes and Development</i> , 2003 , 17, 597-602	12.6	55
140	Slalom encodes an adenosine 3'-phosphate 5'-phosphosulfate transporter essential for development in Drosophila. <i>EMBO Journal</i> , 2003 , 22, 3635-44	13	61
139	Apicobasal polarization: epithelial form and function. Current Opinion in Cell Biology, 2003, 15, 747-52	9	98
138	Integrated activity of PDZ protein complexes regulates epithelial polarity. <i>Nature Cell Biology</i> , 2003 , 5, 53-8	23.4	348
137	Tailoring the genome: the power of genetic approaches. <i>Nature Genetics</i> , 2003 , 33 Suppl, 276-84	36.3	62
136	Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Developmental Cell, 2003 , 5, 441-50	10.2	344
135	Roles of myosin phosphatase during Drosophila development. <i>Development (Cambridge)</i> , 2003 , 130, 67	1686	52
134	neurotic, a novel maternal neurogenic gene, encodes an O-fucosyltransferase that is essential for Notch-Delta interactions. <i>Development (Cambridge)</i> , 2003 , 130, 4785-95	6.6	142
133	Mechanism of inhibition of the Drosophila and mammalian EGF receptors by the transmembrane protein Kekkon 1. <i>Development (Cambridge)</i> , 2003 , 130, 4483-93	6.6	46

132	Liz and Norbert at the movies. Development (Cambridge), 2003, 130, 5556-5557	6.6	
131	Gamma-secretase/presenilin inhibitors for Alzheimer's disease phenocopy Notch mutations in Drosophila. <i>FASEB Journal</i> , 2003 , 17, 79-81	0.9	127
130	Developmental Signaling: JNK Pathway in Drosophila Morphogenesis 2003 , 783-787		
129	Prime Time for the Drosophila JAK/STAT Pathway 2003 , 87-104		1
128	A sensitized genetic screen to identify novel regulators and components of the Drosophila janus kinase/signal transducer and activator of transcription pathway. <i>Genetics</i> , 2003 , 165, 1149-66	4	109
127	Recruitment of scribble to the synaptic scaffolding complex requires GUK-holder, a novel DLG binding protein. <i>Current Biology</i> , 2002 , 12, 531-9	6.3	109
126	Analysis of twenty-four Gal4 lines in Drosophila melanogaster. <i>Genesis</i> , 2002 , 34, 51-7	1.9	76
125	Developmental roles of heparan sulfate proteoglycans in Drosophila. <i>Glycoconjugate Journal</i> , 2002 , 19, 363-8	3	47
124	Activation of the JNK pathway during dorsal closure in Drosophila requires the mixed lineage kinase, slipper. <i>Genes and Development</i> , 2002 , 16, 377-87	12.6	89
123	CKA, a novel multidomain protein, regulates the JUN N-terminal kinase signal transduction pathway in Drosophila. <i>Molecular and Cellular Biology</i> , 2002 , 22, 1792-803	4.8	59
122	Cellular processes associated with germ band retraction in Drosophila. <i>Developmental Biology</i> , 2002 , 248, 29-39	3.1	61
121	Molecular mechanisms of epithelial morphogenesis. <i>Annual Review of Cell and Developmental Biology</i> , 2002 , 18, 463-93	12.6	199
120	The promise and perils of Wnt signaling through beta-catenin. Science, 2002, 296, 1644-6	33.3	862
119	Sequential activation of signaling pathways during innate immune responses in Drosophila. <i>Developmental Cell</i> , 2002 , 3, 711-22	10.2	395
118	The Jak/STAT pathway in model organisms: emerging roles in cell movement. <i>Developmental Cell</i> , 2002 , 3, 765-78	10.2	197
117	Hedgehog signal transduction: recent findings. <i>Current Opinion in Genetics and Development</i> , 2002 , 12, 503-11	4.9	152
116	Heparan sulfate proteoglycan modulation of developmental signaling in Drosophila. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2002 , 1573, 280-91	4	114
115	Mechanism of activation of theDrosophilaEGF Receptor by the TGFIligand Gurken during oogenesis. <i>Development (Cambridge)</i> , 2002 , 129, 175-186	6.6	40

114	Differential requirement for STAT by gain-of-function and wild-type receptor tyrosine kinase Torso in Drosophila. <i>Development (Cambridge)</i> , 2002 , 129, 4241-4248	6.6	14
113	rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling. <i>Development</i> (Cambridge), 2002 , 129, 843-851	6.6	92
112	Differential requirement for STAT by gain-of-function and wild-type receptor tyrosine kinase Torso in Drosophila. <i>Development (Cambridge)</i> , 2002 , 129, 4241-8	6.6	16
111	Mechanism of activation of the Drosophila EGF Receptor by the TGFalpha ligand Gurken during oogenesis. <i>Development (Cambridge)</i> , 2002 , 129, 175-86	6.6	29
110	Heparan Sulfate Proteoglycans are critical for the organization of the extracellular distribution of Wingless. <i>Biochemical Society Transactions</i> , 2001 , 29, A10-A10	5.1	29
109	Glycosylation and Notch signaling. <i>Biochemical Society Transactions</i> , 2001 , 29, A42-A42	5.1	
108	Role of heparan sulfate proteoglycans in cell signaling and cancer. <i>Advances in Cancer Research</i> , 2001 , 83, 67-80	5.9	26
107	Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. <i>Nature</i> , 2001 , 414, 634-8	50.4	206
106	Spatial control of the actin cytoskeleton in Drosophila epithelial cells. <i>Nature Cell Biology</i> , 2001 , 3, 883-	9 0 3.4	107
105	Response to P roblems with LAP nomenclature <i>INature Cell Biology</i> , 2001 , 3, E90-E90	23.4	1
104	Cellular functions of proteoglycansan overview. <i>Seminars in Cell and Developmental Biology</i> , 2001 , 12, 65-7	7.5	93
103	The Drosophila JNK pathway controls the morphogenesis of the egg dorsal appendages and micropyle. <i>Developmental Biology</i> , 2001 , 237, 282-94	3.1	45
102	Dual role of the fringe connection gene in both heparan sulphate and fringe-dependent signalling events. <i>Nature Cell Biology</i> , 2001 , 3, 809-15	23.4	106
101	Investigation of leading edge formation at the interface of amnioserosa and dorsal ectoderm in theDrosophilaembryo. <i>Development (Cambridge)</i> , 2001 , 128, 2905-2913	6.6	24
100	The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. <i>FEBS Journal</i> , 2000 , 267, 4300-11		89
99	The roles of the Drosophila JAK/STAT pathway. <i>Oncogene</i> , 2000 , 19, 2598-606	9.2	120
98	Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. <i>Nature</i> , 2000 , 403, 676-80	50.4	561
97	Specificities of heparan sulphate proteoglycans in developmental processes. <i>Nature</i> , 2000 , 404, 725-8	50.4	638

96	Drosophila genome takes flight. <i>Nature Cell Biology</i> , 2000 , 2, E53-4	23.4	5
95	Collective nomenclature for LAP proteins. <i>Nature Cell Biology</i> , 2000 , 2, E114	23.4	58
94	Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila. <i>Current Opinion in Cell Biology</i> , 2000 , 12, 575-80	9	95
93	A cyclase-associated protein regulates actin and cell polarity during Drosophila oogenesis and in yeast. <i>Current Biology</i> , 2000 , 10, 964-73	6.3	82
92	Sex determination: co-opted signals determine gender. <i>Current Biology</i> , 2000 , 10, R682-4	6.3	7
91	Presenilin affects arm/beta-catenin localization and function in Drosophila. <i>Developmental Biology</i> , 2000 , 227, 450-64	3.1	48
90	Multiple roles for four-jointed in planar polarity and limb patterning. <i>Developmental Biology</i> , 2000 , 228, 181-96	3.1	117
89	Role of heparan sulfate proteoglycans in cell-cell signaling in Drosophila. <i>Matrix Biology</i> , 2000 , 19, 303-	711.4	82
88	Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. <i>Science</i> , 2000 , 289, 113-6	33.3	740
87	Signal transduction. Are there close encounters between signaling pathways?. <i>Science</i> , 2000 , 290, 68-9	33.3	30
86	Signal transduction. Are there close encounters between signaling pathways?. <i>Science</i> , 2000 , 290, 68-9 Identification of autosomal regions involved in Drosophila Raf function. <i>Genetics</i> , 2000 , 156, 763-74	33.3	30
		4	13
86	Identification of autosomal regions involved in Drosophila Raf function. <i>Genetics</i> , 2000 , 156, 763-74	4	13
86	Identification of autosomal regions involved in Drosophila Raf function. <i>Genetics</i> , 2000 , 156, 763-74 Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. <i>Nature</i> , 1999 , 400, 281-4	4 50.4	13
86 85 84	Identification of autosomal regions involved in Drosophila Raf function. <i>Genetics</i> , 2000 , 156, 763-74 Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. <i>Nature</i> , 1999 , 400, 281-4 Stress signaling in Drosophila. <i>Oncogene</i> , 1999 , 18, 6172-82 The four-jointed gene is required in the Drosophila eye for ommatidial polarity specification.	4 50.4 9.2	13 413 103
86 85 84 83	Identification of autosomal regions involved in Drosophila Raf function. <i>Genetics</i> , 2000 , 156, 763-74 Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. <i>Nature</i> , 1999 , 400, 281-4 Stress signaling in Drosophila. <i>Oncogene</i> , 1999 , 18, 6172-82 The four-jointed gene is required in the Drosophila eye for ommatidial polarity specification. <i>Current Biology</i> , 1999 , 9, 1363-72 Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate	4 50.4 9.2 6.3	13 413 103
86 85 84 83 82	Identification of autosomal regions involved in Drosophila Raf function. <i>Genetics</i> , 2000 , 156, 763-74 Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. <i>Nature</i> , 1999 , 400, 281-4 Stress signaling in Drosophila. <i>Oncogene</i> , 1999 , 18, 6172-82 The four-jointed gene is required in the Drosophila eye for ommatidial polarity specification. <i>Current Biology</i> , 1999 , 9, 1363-72 Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. <i>Molecular Cell</i> , 1999 , 4, 633-9 The transmembrane molecule kekkon 1 acts in a feedback loop to negatively regulate the activity	4 50.4 9.2 6.3	13 413 103 120 327

78	I-Scel endonuclease, a new tool for studying DNA double-strand break repair mechanisms in Drosophila. <i>Genetics</i> , 1999 , 152, 1037-44	4	50
77	Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. <i>Nature</i> , 1998 , 394, 85-8	50.4	441
76	Frizzled signaling and the developmental control of cell polarity. <i>Trends in Genetics</i> , 1998 , 14, 452-8	8.5	158
75	Opposing actions of CSW and RasGAP modulate the strength of Torso RTK signaling in the Drosophila terminal pathway. <i>Molecular Cell</i> , 1998 , 2, 719-27	17.6	80
74	Mammalian and Drosophila blood: JAK of all trades?. Cell, 1998, 92, 697-700	56.2	43
73	Paradigms to study signal transduction pathways in Drosophila. <i>Current Topics in Developmental Biology</i> , 1997 , 35, 229-61	5.3	4
72	There must be 50 ways to rule the signal: the case of the Drosophila EGF receptor. <i>Cell</i> , 1997 , 89, 13-6	56.2	124
71	The nuclear hormone receptor Ftz-F1 is a cofactor for the Drosophila homeodomain protein Ftz. <i>Nature</i> , 1997 , 385, 552-5	50.4	168
70	A new enhancer of position-effect variegation in Drosophila melanogaster encodes a putative RNA helicase that binds chromosomes and is regulated by the cell cycle. <i>Genetics</i> , 1997 , 146, 951-63	4	31
69	Specificity of receptor tyrosine kinase signaling pathways: lessons from Drosophila. <i>Genetic Engineering</i> , 1997 , 19, 167-82		6
68	The Drosophila kekkon genes: novel members of both the leucine-rich repeat and immunoglobulin superfamilies expressed in the CNS. <i>Developmental Biology</i> , 1996 , 178, 63-76	3.1	100
67			
	The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila. <i>Developmental Biology</i> , 1996 , 180, 63-81	3.1	102
66		3.1 56.2	102
	kinase pathways in Drosophila. <i>Developmental Biology</i> , 1996 , 180, 63-81	56.2	
66	kinase pathways in Drosophila. <i>Developmental Biology</i> , 1996 , 180, 63-81 Serpentine proteins slither into the wingless and hedgehog fields. <i>Cell</i> , 1996 , 86, 513-6 Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the	56.2	68
66	kinase pathways in Drosophila. <i>Developmental Biology</i> , 1996 , 180, 63-81 Serpentine proteins slither into the wingless and hedgehog fields. <i>Cell</i> , 1996 , 86, 513-6 Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. <i>Cell</i> , 1996 , 84, 411-9	56.2	68
66 65 64	kinase pathways in Drosophila. <i>Developmental Biology</i> , 1996 , 180, 63-81 Serpentine proteins slither into the wingless and hedgehog fields. <i>Cell</i> , 1996 , 86, 513-6 Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. <i>Cell</i> , 1996 , 84, 411-9 Genes Involved in Postembryonic Cell Proliferation in Drosophila 1996 , 363-400	56.2	68

60	Activation of posterior gap gene expression in the Drosophila blastoderm. <i>Nature</i> , 1995 , 376, 253-6	50.4	159
59	The torso receptor tyrosine kinase can activate Raf in a Ras-independent pathway. <i>Cell</i> , 1995 , 81, 63-71	56.2	110
58	Evidence for engrailed-independent wingless autoregulation in Drosophila. <i>Developmental Biology</i> , 1995 , 170, 636-50	3.1	83
57	Dissection of the Torso signal transduction pathway in Drosophila. <i>Molecular Reproduction and Development</i> , 1995 , 42, 515-22	2.6	30
56	DmRaf: Raf homologue (D. melanogaster) 1995 , 331-332		
55	Ectopic expression in Drosophila. <i>Methods in Cell Biology</i> , 1994 , 44, 635-54	1.8	247
54	Drosophila wingless: a paradigm for the function and mechanism of Wnt signaling. <i>BioEssays</i> , 1994 , 16, 395-404	4.1	137
53	Signal transduction in the early Drosophila embryo: when genetics meets biochemistry. <i>Trends in Biochemical Sciences</i> , 1994 , 19, 509-13	10.3	24
52	Components of wingless signalling in Drosophila. <i>Nature</i> , 1994 , 367, 76-80	50.4	291
51	dishevelled and armadillo act in the wingless signalling pathway in Drosophila. <i>Nature</i> , 1994 , 367, 80-3	50.4	323
50	The genetic basis of patterned baldness in Drosophila. <i>Cell</i> , 1994 , 76, 781-4	56.2	165
49	Isolation and characterization of a mouse homolog of the Drosophila segment polarity gene dishevelled. <i>Developmental Biology</i> , 1994 , 166, 73-86	3.1	156
48	The torso pathway in Drosophila: lessons on receptor tyrosine kinase signaling and pattern formation. <i>Developmental Biology</i> , 1994 , 166, 380-95	3.1	102
47	Signalling pathways initiated by receptor protein tyrosine kinases in Drosophila. <i>Current Opinion in Cell Biology</i> , 1994 , 6, 260-6	9	87
46	The torso receptor protein-tyrosine kinase signaling pathway: an endless story. <i>Cell</i> , 1993 , 74, 219-22	56.2	100
45	Approaches to identify genes involved in Drosophila embryonic CNS development. <i>Journal of Neurobiology</i> , 1993 , 24, 701-22		3
44	Simple and efficient generation of marked clones in Drosophila. <i>Current Biology</i> , 1993 , 3, 424-33	6.3	125
43	Cell patterning in the Drosophila segment: engrailed and wingless antigen distributions in segment polarity mutant embryos. <i>Development (Cambridge)</i> , 1993 , 119, 105-114	6.6	18

42	The torso pathway in Drosophila: a model system to study receptor tyrosine kinase signal transduction. <i>Development (Cambridge)</i> , 1993 , 119, 47-56	6.6	23
41	corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. <i>Cell</i> , 1992 , 70, 225-36	56.2	378
40	wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. <i>Cell</i> , 1992 , 71, 1167-79	56.2	376
39	Use of a yeast site-specific recombinase to generate embryonic mosaics in Drosophila. <i>Genesis</i> , 1992 , 13, 367-75		40
38	Generating lineage-specific markers to study Drosophila development. <i>Genesis</i> , 1991 , 12, 238-52		92
37	The molecular genetics of head development in Drosophila melanogaster. <i>Development</i> (Cambridge), 1991 , 112, 899-912	6.6	84
36	Putative protein kinase product of the Drosophila segment-polarity gene zeste-white3. <i>Nature</i> , 1990 , 345, 825-9	50.4	151
35	The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. <i>Nature</i> , 1990 , 346, 485-8	50.4	226
34	Serine/threonine protein kinases in Drosophila. <i>Trends in Genetics</i> , 1990 , 6, 357-62	8.5	17
33	Genetic dissection of a complex neurological mutant, polyhomeotic, in Drosophila. <i>Developmental Biology</i> , 1990 , 139, 169-85	3.1	20
32	Requirement of the Drosophila raf homologue for torso function. <i>Nature</i> , 1989 , 342, 288-91	50.4	170
31	The segment polarity phenotype of Drosophila involves differential tendencies toward transformation and cell death. <i>Developmental Biology</i> , 1989 , 134, 130-45	3.1	77
30	Multiple functions of a Drosophila homeotic gene, zeste-white 3, during segmentation and neurogenesis. <i>Developmental Biology</i> , 1989 , 135, 287-305	3.1	72
29	The maternal effect of lethal(1)discs-large-1: a recessive oncogene of Drosophila melanogaster. <i>Developmental Biology</i> , 1988 , 127, 392-407	3.1	71
28	Region-specific defects in l(1)giant embryos of Drosophila melanogaster. <i>Developmental Biology</i> , 1987 , 119, 175-89	3.1	47
27	Multiple functions of segment polarity genes in Drosophila. <i>Developmental Biology</i> , 1987 , 119, 587-600	3.1	176
26	l(1)hopscotch, A larval-pupal zygotic lethal with a specific maternal effect on segmentation in Drosophila. <i>Developmental Biology</i> , 1986 , 118, 28-41	3.1	93
25	X-linked female-sterile loci in Drosophila melanogaster. <i>Genetics</i> , 1986 , 113, 695-712	4	145

24	Clonal analysis of two mutations in the large subunit of RNA polymerase II of Drosophila. <i>Molecular Genetics and Genomics</i> , 1985 , 199, 421-6		13
23	A pupal lethal mutation with a paternally influenced maternal effect on embryonic development in Drosophila melanogaster. <i>Developmental Biology</i> , 1985 , 110, 480-91	3.1	60
22	Developmental genetics of the 2C-D region of the Drosophila X chromosome. <i>Genetics</i> , 1985 , 111, 23-4	114	88
21	The effects of zygotic lethal mutations on female germ-line functions in Drosophila. <i>Developmental Biology</i> , 1984 , 105, 404-14	3.1	92
20	Developmental genetics of the 2E-F region of the Drosophila X chromosome: a region rich in "developmentally important" genes. <i>Genetics</i> , 1984 , 108, 559-72	4	50
19	Clonal Analysis of Dominant Female-Sterile, Germline-Dependent Mutations in DROSOPHILA MELANOGASTER. <i>Genetics</i> , 1984 , 108, 927-39	4	58
18	Clonal analysis of the tissue specificity of recessive female-sterile mutations of Drosophila melanogaster using a dominant female-sterile mutation Fs(1)K1237. <i>Developmental Biology</i> , 1983 , 100, 365-73	3.1	108
17	Inferring genetic architecture from systems genetics studies139-160		
16	Proteomics of protein trafficking by in vivo tissue-specific labeling		2
15	iProteinDB: an integrative database of Drosophila post-translational modifications		2
14	Lysosomal cystine mobilization shapes the response of mTORC1 and tissue growth to fasting		2
13	Gene knock-ins in Drosophila using homology-independent insertion of universal donor plasmids		2
12	SNP-CRISPR: a web tool for SNP-specific genome editing		1
11	Drosophila PDGF/VEGF signaling from muscles to hepatocyte-like cells protects against obesity		2
10	A single-cell survey of Drosophila blood		2
9	Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila		5
8	BioLitMine: advanced mining of biomedical and biological literature about human genes and genes from major model organisms		1
7	Precise genome engineering in Drosophila using prime editing		5

6	CRISPR-Cas13 mediated Knock Down in Drosophila cultured cells	2
5	A cell atlas of the adult Drosophila midgut	2
4	FlyPhoneDB: An integrated web-based resource for cell-cell communication prediction in Drosophila	2
3	Fly Cell Atlas: a single-cell transcriptomic atlas of the adult fruit fly	16
2	DRscDB: A single-cell RNA-seq resource for data mining and data comparison across species	2
1	A cell atlas of the fly kidney	2