List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1217364/publications.pdf Version: 2024-02-01

NODREDT DEDDIMON

#	Article	IF	CITATIONS
1	The developmental transcriptome of Drosophila melanogaster. Nature, 2011, 471, 473-479.	13.7	1,379
2	Highly efficient Cas9-mediated transcriptional programming. Nature Methods, 2015, 12, 326-328.	9.0	1,245
3	Identification of Functional Elements and Regulatory Circuits by <i>Drosophila</i> modENCODE. Science, 2010, 330, 1787-1797.	6.0	1,124
4	Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechnology, 2018, 36, 880-887.	9.4	1,103
5	Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature, 2006, 439, 475-479.	13.7	991
6	The Promise and Perils of Wnt Signaling Through beta -Catenin. Science, 2002, 296, 1644-1646.	6.0	937
7	Droplet microfluidic technology for single-cell high-throughput screening. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14195-14200.	3.3	924
8	Cooperative Regulation of Cell Polarity and Growth by Drosophila Tumor Suppressors. Science, 2000, 289, 113-116.	6.0	867
9	A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nature Methods, 2011, 8, 405-407.	9.0	733
10	FlyBase 2.0: the next generation. Nucleic Acids Research, 2019, 47, D759-D765.	6.5	697
11	Specificities of heparan sulphate proteoglycans in developmental processes. Nature, 2000, 404, 725-728.	13.7	695
12	Genome-Wide RNAi Analysis of Growth and Viability in Drosophila Cells. Science, 2004, 303, 832-835.	6.0	675
13	Diversity and dynamics of the Drosophila transcriptome. Nature, 2014, 512, 393-399.	13.7	647
14	An endogenous small interfering RNA pathway in Drosophila. Nature, 2008, 453, 798-802.	13.7	633
15	Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nature Photonics, 2009, 3, 412-417.	15.6	632
16	The Autosomal FLP-DFS Technique for Generating Germline Mosaics in <i>Drosophila melanogaster</i> . Genetics, 1996, 144, 1673-1679.	1.2	632
17	Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature, 2000, 403, 676-680.	13.7	629
18	An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics, 2011, 12, 357.	1.2	629

#	Article	IF	CITATIONS
19	Heparan sulphate proteoglycans: the sweet side of development. Nature Reviews Molecular Cell Biology, 2005, 6, 530-541.	16.1	608
20	FOXO/4E-BP Signaling in Drosophila Muscles Regulates Organism-wide Proteostasis during Aging. Cell, 2010, 143, 813-825.	13.5	563
21	The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. Genetics, 2015, 201, 843-852.	1.2	502
22	Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nature Genetics, 2008, 40, 476-483.	9.4	486
23	Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature, 1998, 394, 85-88.	13.7	483
24	Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature, 1999, 400, 281-284.	13.7	459
25	Sequential Activation of Signaling Pathways during Innate Immune Responses in Drosophila. Developmental Cell, 2002, 3, 711-722.	3.1	441
26	Comparison of Cas9 activators in multiple species. Nature Methods, 2016, 13, 563-567.	9.0	438
27	Minimizing the risk of reporting false positives in large-scale RNAi screens. Nature Methods, 2006, 3, 777-779.	9.0	417
28	Drosophila Cytokine Unpaired 2 Regulates Physiological Homeostasis by Remotely Controlling Insulin Secretion. Cell, 2012, 151, 123-137.	13.5	411
29	Signaling Role of Hemocytes in Drosophila JAK/STAT-Dependent Response to Septic Injury. Developmental Cell, 2003, 5, 441-450.	3.1	403
30	wingless signaling acts through zeste-white 3, the drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell, 1992, 71, 1167-1179.	13.5	402
31	corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell, 1992, 70, 225-236.	13.5	400
32	Integrated activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biology, 2003, 5, 53-58.	4.6	396
33	The emergence of geometric order in proliferating metazoan epithelia. Nature, 2006, 442, 1038-1041.	13.7	380
34	FlyBase: updates to the <i>Drosophila melanogaster</i> knowledge base. Nucleic Acids Research, 2021, 49, D899-D907.	6.5	374
35	marelle Acts Downstream of the Drosophila HOP/JAK Kinase and Encodes a Protein Similar to the Mammalian STATs. Cell, 1996, 84, 411-419.	13.5	366
36	Optimized gene editing technology for <i>Drosophila melanogaster</i> using germ line-specific Cas9. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19012-19017.	3.3	365

#	Article	IF	CITATIONS
37	Hedgehog Movement Is Regulated through tout velu–Dependent Synthesis of a Heparan Sulfate Proteoglycan. Molecular Cell, 1999, 4, 633-639.	4.5	351
38	dishevelled and armadillo act in the Wingless signalling pathway in Drosophila. Nature, 1994, 367, 80-83.	13.7	350
39	High-throughput RNAi screening in cultured cells: a user's guide. Nature Reviews Genetics, 2006, 7, 373-384.	7.7	348
40	Drosophila RNAi Screen Reveals CD36 Family Member Required for Mycobacterial Infection. Science, 2005, 309, 1251-1253.	6.0	347
41	Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature, 2006, 439, 604-607.	13.7	337
42	GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. Gene Expression Patterns, 2007, 7, 323-331.	0.3	330
43	Functional Genomic Analysis of the Wnt-Wingless Signaling Pathway. Science, 2005, 308, 826-833.	6.0	325
44	Signaling Mechanisms Controlling Cell Fate and Embryonic Patterning. Cold Spring Harbor Perspectives in Biology, 2012, 4, a005975-a005975.	2.3	319
45	Muscle Mitohormesis Promotes Longevity via Systemic Repression of Insulin Signaling. Cell, 2013, 155, 699-712.	13.5	318
46	Components of wingless signalling in Drosophila. Nature, 1994, 367, 76-80.	13.7	314
47	Chapter 33 Ectopic Expression in Drosophila. Methods in Cell Biology, 1994, 44, 635-654.	0.5	302
48	The roles of JAK/STAT signaling in Drosophila immune responses. Immunological Reviews, 2004, 198, 72-82.	2.8	299
49	A Drosophila Resource of Transgenic RNAi Lines for Neurogenetics. Genetics, 2009, 182, 1089-1100.	1.2	295
50	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 2022, 375, eabk2432.	6.0	295
51	Seipin is required for converting nascent to mature lipid droplets. ELife, 2016, 5, .	2.8	292
52	Parallel Chemical Genetic and Genome-Wide RNAi Screens Identify Cytokinesis Inhibitors and Targets. PLoS Biology, 2004, 2, e379.	2.6	289
53	Comparative analysis of the transcriptome across distant species. Nature, 2014, 512, 445-448.	13.7	289
54	RNAi screening comes of age: improved techniques and complementary approaches. Nature Reviews Molecular Cell Biology, 2014, 15, 591-600.	16.1	289

#	Article	IF	CITATIONS
55	Mechanical Allostery: Evidence for a Force Requirement in the Proteolytic Activation of Notch. Developmental Cell, 2015, 33, 729-736.	3.1	288
56	Quantitative Morphological Signatures Define Local Signaling Networks Regulating Cell Morphology. Science, 2007, 316, 1753-1756.	6.0	286
57	Genome-Wide RNAi Screen for Host Factors Required for Intracellular Bacterial Infection. Science, 2005, 309, 1248-1251.	6.0	282
58	The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development (Cambridge), 2010, 137, 4135-4145.	1.2	282
59	Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nature Methods, 2008, 5, 49-51.	9.0	271
60	The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. Nature, 1990, 346, 485-488.	13.7	266
61	Genomic Screening with RNAi: Results and Challenges. Annual Review of Biochemistry, 2010, 79, 37-64.	5.0	260
62	Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. Nature, 2018, 555, 103-106.	13.7	258
63	Safeguarding gene drive experiments in the laboratory. Science, 2015, 349, 927-929.	6.0	254
64	Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4976-4981.	3.3	249
65	Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nature Methods, 2006, 3, 833-838.	9.0	244
66	Hierarchical Rules for Argonaute Loading in Drosophila. Molecular Cell, 2009, 36, 445-456.	4.5	242
67	The transcriptional diversity of 25 <i>Drosophila</i> cell lines. Genome Research, 2011, 21, 301-314.	2.4	235
68	The PDGF/VEGF Receptor Controls Blood Cell Survival in Drosophila. Developmental Cell, 2004, 7, 73-84.	3.1	234
69	The JAK/STAT Pathway in Model Organisms. Developmental Cell, 2002, 3, 765-778.	3.1	219
70	Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature, 2001, 414, 634-638.	13.7	217
71	Molecular Mechanisms of Epithelial Morphogenesis. Annual Review of Cell and Developmental Biology, 2002, 18, 463-493.	4.0	215
72	Systemic Organ Wasting Induced by Localized Expression of the Secreted Insulin/IGF Antagonist ImpL2. Developmental Cell, 2015, 33, 36-46.	3.1	209

#	Article	IF	CITATIONS
73	A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature, 2006, 444, 230-234.	13.7	207
74	Deep annotation of <i>Drosophila melanogaster</i> microRNAs yields insights into their processing, modification, and emergence. Genome Research, 2011, 21, 203-215.	2.4	207
75	A gene-specific T2A-GAL4 library for Drosophila. ELife, 2018, 7, .	2.8	203
76	Mechanisms of skeletal muscle aging: insights from <i>Drosophila</i> and mammalian models. DMM Disease Models and Mechanisms, 2013, 6, 1339-52.	1.2	201
77	Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes and Development, 2005, 19, 1861-1870.	2.7	200
78	Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proceedings of the United States of America, 2009, 106, 20883-20888.	3.3	200
79	Multiple functions of segment polarity genes in Drosophila. Developmental Biology, 1987, 119, 587-600.	0.9	199
80	The Transmembrane Molecule Kekkon 1 Acts in a Feedback Loop to Negatively Regulate the Activity of the Drosophila EGF Receptor during Oogenesis. Cell, 1999, 96, 847-856.	13.5	199
81	Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. Genes and Development, 2005, 19, 445-452.	2.7	193
82	Control of Proinflammatory Gene Programs by Regulated Trimethylation and Demethylation of Histone H4K20. Molecular Cell, 2012, 48, 28-38.	4.5	193
83	Requirement of the Drosophila raf homologue for torso function. Nature, 1989, 342, 288-291.	13.7	192
84	<i>X</i> -LINKED FEMALE-STERILE LOCI IN <i>DROSOPHILA MELANOGASTER</i> . Genetics, 1986, 113, 695-712.	1.2	192
85	Activation of posterior gap gene expression in the Drosophila blastoderm. Nature, 1995, 376, 253-256.	13.7	184
86	The nuclear hormone receptor Ftz-F1 is a cofactor for the Drosophila homeodomain protein Ftz. Nature, 1997, 385, 552-555.	13.7	184
87	Extrusion and Death of DPP/BMP-Compromised Epithelial Cells in the Developing Drosophila Wing. Science, 2005, 307, 1785-1789.	6.0	182
88	MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome. American Journal of Human Genetics, 2017, 100, 843-853.	2.6	181
89	The genetic basis of patterned baldness in Drosophila. Cell, 1994, 76, 781-784.	13.5	180
90	The influence of skeletal muscle on systemic aging and lifespan. Aging Cell, 2013, 12, 943-949.	3.0	179

#	Article	IF	CITATIONS
91	A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nature Genetics, 2005, 37, 1323-1332.	9.4	178
92	Frizzled signaling and the developmental control of cell polarity. Trends in Genetics, 1998, 14, 452-458.	2.9	176
93	Notch modulates Wnt signalling by associating with Armadillo/β-catenin and regulating its transcriptional activity. Development (Cambridge), 2005, 132, 1819-1830.	1.2	176
94	A cell atlas of the adult <i>Drosophila</i> midgut. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1514-1523.	3.3	175
95	Temperature-sensitive control of protein activity by conditionally splicing inteins. Nature Biotechnology, 2004, 22, 871-876.	9.4	173
96	Control of the Mitotic Cleavage Plane by Local Epithelial Topology. Cell, 2011, 144, 427-438.	13.5	173
97	In vivo RNAi: Today and Tomorrow. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003640-a003640.	2.3	172
98	Putative protein kinase product of the Drosophila segment-polarity gene zeste-white3. Nature, 1990, 345, 825-829.	13.7	169
99	Zygotic Lethal Mutations With Maternal Effect Phenotypes in <i>Drosophila melanogaster</i> . II. Loci on the Second and Third Chromosomes Identified by <i>P</i> -Element-Induced Mutations. Genetics, 1996, 144, 1681-1692.	1.2	167
100	Drosophila and the genetics of the internal milieu. Nature, 2007, 450, 186-188.	13.7	166
101	Isolation and Characterization of a Mouse Homolog of the Drosophila Segment Polarity Gene dishevelled. Developmental Biology, 1994, 166, 73-86.	0.9	165
102	Control of Lipid Metabolism by Tachykinin in Drosophila. Cell Reports, 2014, 9, 40-47.	2.9	165
103	Hedgehog signal transduction: recent findings. Current Opinion in Genetics and Development, 2002, 12, 503-511.	1.5	162
104	Genetic Screening for Signal Transduction in the Era of Network Biology. Cell, 2007, 128, 225-231.	13.5	161
105	Interorgan Communication Pathways in Physiology: Focus on <i>Drosophila</i> . Annual Review of Genetics, 2016, 50, 539-570.	3.2	161
106	Integration of Insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in <i>Drosophila</i> . Development (Cambridge), 2009, 136, 983-993.	1.2	159
107	Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nature Reviews Genetics, 2017, 18, 24-40.	7.7	159
108	A screen for morphological complexity identifies regulators of switch-like transitions between discreteÂcell shapes. Nature Cell Biology, 2013, 15, 860-871.	4.6	158

#	Article	IF	CITATIONS
109	neurotic, a novel maternal neurogenic gene, encodes an O-fucosyltransferase that is essential for Notch-Delta interactions. Development (Cambridge), 2003, 130, 4785-4795.	1.2	153
110	The Hippo Signaling Pathway Interactome. Science, 2013, 342, 737-740.	6.0	151
111	Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell, 2019, 18, e13034.	3.0	151
112	Clonal analysis of the tissue specificity of recessive female-sterile mutations of Drosophila melanogaster using a dominant female-sterile mutation Fs(1)K1237. Developmental Biology, 1983, 100, 365-373.	0.9	148
113	Intramyocellular Fatty-Acid Metabolism Plays a Critical Role in Mediating Responses to Dietary Restriction in Drosophila melanogaster. Cell Metabolism, 2012, 16, 97-103.	7.2	147
114	Functional screening in Drosophila identifies Alzheimer's disease susceptibility genes and implicates Tau-mediated mechanisms. Human Molecular Genetics, 2014, 23, 870-877.	1.4	147
115	Drosophila wingless: A paradigm for the function and mechanism of Wnt signaling. BioEssays, 1994, 16, 395-404.	1.2	146
116	Conserved microRNA targeting in <i>Drosophila</i> is as widespread in coding regions as in 3′UTRs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15751-15756.	3.3	146
117	Simple and efficient generation of marked clones in Drosophila. Current Biology, 1993, 3, 424-433.	1.8	145
118	Alliance of Genome Resources Portal: unified model organism research platform. Nucleic Acids Research, 2020, 48, D650-D658.	6.5	145
119	Proteomic mapping in live <i>Drosophila</i> tissues using an engineered ascorbate peroxidase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12093-12098.	3.3	143
120	The roles of the Drosophila JAK/STAT pathway. Oncogene, 2000, 19, 2598-2606.	2.6	138
121	γâ€5ecretase/presenilin inhibitors for Alzheimer's disease phenocopy Notch mutations inDrosophila. FASEB Journal, 2003, 17, 79-81.	0.2	138
122	A Genomewide RNA Interference Screen for Modifiers of Aggregates Formation by Mutant Huntingtin in Drosophila. Genetics, 2010, 184, 1165-1179.	1.2	138
123	Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1761-1766.	3.3	137
124	There Must Be 50 Ways to Rule the Signal: The Case of the Drosophila EGF Receptor. Cell, 1997, 89, 13-16.	13.5	136
125	Modeling metabolic homeostasis and nutrient sensing in <i>Drosophila</i> : implications for aging and metabolic diseases. DMM Disease Models and Mechanisms, 2014, 7, 343-350.	1.2	134
126	A single-cell survey of Drosophila blood. ELife, 2020, 9, .	2.8	134

8

#	Article	IF	CITATIONS
127	Complementary Genomic Screens Identify SERCA as a Therapeutic Target in NOTCH1 Mutated Cancer. Cancer Cell, 2013, 23, 390-405.	7.7	130
128	Integrating protein-protein interaction networks with phenotypes reveals signs of interactions. Nature Methods, 2014, 11, 94-99.	9.0	130
129	FlyPrimerBank: An Online Database for <i>Drosophila melanogaster</i> Gene Expression Analysis and Knockdown Evaluation of RNAi Reagents. G3: Genes, Genomes, Genetics, 2013, 3, 1607-1616.	0.8	129
130	A Regulatory Network of Drosophila Germline Stem Cell Self-Renewal. Developmental Cell, 2014, 28, 459-473.	3.1	128
131	The torso receptor tyrosine kinase can activate raf in a ras-independent pathway. Cell, 1995, 81, 63-71.	13.5	127
132	The four-jointed gene is required in the Drosophila eye for ommatidial polarity specification. Current Biology, 1999, 9, 1363-1372.	1.8	126
133	Heparan sulfate proteoglycan modulation of developmental signaling in Drosophila. Biochimica Et Biophysica Acta - General Subjects, 2002, 1573, 280-291.	1.1	126
134	In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography. Nature Methods, 2008, 5, 45-47.	9.0	125
135	Comparative Analysis of Argonaute-Dependent Small RNA Pathways in Drosophila. Molecular Cell, 2008, 32, 592-599.	4.5	125
136	The effects of zygotic lethal mutations on female germ-line functions in Drosophila. Developmental Biology, 1984, 105, 404-414.	0.9	124
137	Negative Feedback Mechanisms and Their Roles during Pattern Formation. Cell, 1999, 97, 13-16.	13.5	124
138	Multiple Roles for four-jointed in Planar Polarity and Limb Patterning. Developmental Biology, 2000, 228, 181-196.	0.9	124
139	A Sensitized Genetic Screen to Identify Novel Regulators and Components of the Drosophila Janus Kinase/Signal Transducer and Activator of Transcription Pathway. Genetics, 2003, 165, 1149-1166.	1.2	124
140	Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. Genome Research, 2011, 21, 1395-1403.	2.4	123
141	Recruitment of Scribble to the Synaptic Scaffolding Complex Requires GUK-holder, a Novel DLG Binding Protein. Current Biology, 2002, 12, 531-539.	1.8	122
142	The Torso Pathway in Drosophila: Lessons on Receptor Tyrosine Kinase Signaling and Pattern Formation. Developmental Biology, 1994, 166, 380-395.	0.9	120
143	Spatial control of the actin cytoskeleton in Drosophila epithelial cells. Nature Cell Biology, 2001, 3, 883-890.	4.6	120
144	RNAi screening: new approaches, understandings, and organisms. Wiley Interdisciplinary Reviews RNA, 2012, 3, 145-158.	3.2	120

#	Article	IF	CITATIONS
145	Enteroendocrine Cells Support Intestinal Stem-Cell-Mediated Homeostasis in Drosophila. Cell Reports, 2014, 9, 32-39.	2.9	120
146	Systematic screen of chemotherapeutics in <i>Drosophila</i> stem cell tumors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4530-4535.	3.3	119
147	<i>In Vivo</i> Transcriptional Activation Using CRISPR/Cas9 in <i>Drosophila</i> . Genetics, 2015, 201, 433-442.	1.2	117
148	<i>rasp</i> , a putative transmembrane acyltransferase, is required for Hedgehog signaling. Development (Cambridge), 2002, 129, 843-851.	1.2	116
149	The Nonreceptor Protein Tyrosine Phosphatase Corkscrew Functions in Multiple Receptor Tyrosine Kinase Pathways inDrosophila. Developmental Biology, 1996, 180, 63-81.	0.9	114
150	Dual role of the fringe connection gene in both heparan sulphate and fringe-dependent signalling events. Nature Cell Biology, 2001, 3, 809-815.	4.6	113
151	Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Science Signaling, 2015, 8, rs9.	1.6	113
152	Mechanisms of muscle growth and atrophy in mammals and <i>Drosophila</i> . Developmental Dynamics, 2014, 243, 201-215.	0.8	112
153	The torso receptor protein-tyrosine kinase signaling pathway: An endless story. Cell, 1993, 74, 219-222.	13.5	111
154	wingless refines its own expression domain on the Drosophila wing margin. Nature, 1996, 384, 72-74.	13.7	111
155	COPI Activity Coupled with Fatty Acid Biosynthesis Is Required for Viral Replication. PLoS Pathogens, 2006, 2, e102.	2.1	111
156	Stress signaling in Drosophila. Oncogene, 1999, 18, 6172-6182.	2.6	110
157	The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors. Developmental Biology, 2004, 276, 89-100.	0.9	110
158	Phosphorylation Networks Regulating JNK Activity in Diverse Genetic Backgrounds. Science, 2008, 322, 453-456.	6.0	110
159	Protein Complex–Based Analysis Framework for High-Throughput Data Sets. Science Signaling, 2013, 6, rs5.	1.6	110
160	Apicobasal polarization: epithelial form and function. Current Opinion in Cell Biology, 2003, 15, 747-752.	2.6	109
161	mTORC1 Couples Nucleotide Synthesis to Nucleotide Demand Resulting in a Targetable Metabolic Vulnerability. Cancer Cell, 2017, 32, 624-638.e5.	7.7	109
162	Cellular functions of proteoglycans—an overview. Seminars in Cell and Developmental Biology, 2001, 12, 65-67.	2.3	108

#	Article	IF	CITATIONS
163	The Circadian Clock Gates the Intestinal Stem Cell Regenerative State. Cell Reports, 2013, 3, 996-1004.	2.9	108
164	The molecular genetics of head development in <i>Drosophila melanogaster</i> . Development (Cambridge), 1991, 112, 899-912.	1.2	108
165	l(1)hopscotch, a larval-pupal zygotic lethal with a specific maternal effect on segmentation in Drosophila. Developmental Biology, 1986, 118, 28-41.	0.9	107
166	TheDrosophila kekkonGenes: Novel Members of both the Leucine-Rich Repeat and Immunoglobulin Superfamilies Expressed in the CNS. Developmental Biology, 1996, 178, 63-76.	0.9	107
167	The evolutionarily conservedporcupinegene family is involved in the processing of the Wnt family. FEBS Journal, 2000, 267, 4300-4311.	0.2	107
168	DEVELOPMENTAL GENETICS OF THE 2C-D REGION OF THE DROSOPHILA <i>X</i> CHROMOSOME. Genetics, 1985, 111, 23-41.	1.2	107
169	Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. Nature Immunology, 2004, 5, 81-87.	7.0	105
170	An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. ELife, 2019, 8, .	2.8	105
171	Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila. Current Opinion in Cell Biology, 2000, 12, 575-580.	2.6	104
172	Intertissue Control of the Nucleolus via a Myokine-Dependent Longevity Pathway. Cell Reports, 2014, 7, 1481-1494.	2.9	104
173	Analysis of twenty-four Gal4 lines inDrosophila melanogaster. Genesis, 2002, 34, 51-57.	0.8	102
174	Design and implementation of high-throughput RNAi screens in cultured Drosophila cells. Nature Protocols, 2007, 2, 2245-2264.	5.5	102
175	Stable Force Balance between Epithelial Cells Arises from F-Actin Turnover. Developmental Cell, 2015, 35, 685-697.	3.1	102
176	A Membrane Transporter Is Required for Steroid Hormone Uptake in Drosophila. Developmental Cell, 2018, 47, 294-305.e7.	3.1	102
177	Role of Autophagy in Glycogen Breakdown and Its Relevance to Chloroquine Myopathy. PLoS Biology, 2013, 11, e1001708.	2.6	101
178	Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila. Nature Communications, 2020, 11, 4483.	5.8	100
179	Activation of the JNK pathway during dorsal closure in Drosophila requires the mixed lineage kinase, slipper. Genes and Development, 2002, 16, 377-387.	2.7	99
180	Generating lineage-specific markers to studyDrosophila development. Genesis, 1991, 12, 238-252.	3.1	98

#	Article	IF	CITATIONS
181	Depleting Gene Activities in Early <i>Drosophila</i> Embryos with the "Maternal-Gal4–shRNA―System. Genetics, 2013, 193, 51-61.	1.2	98
182	Role of heparan sulfate proteoglycans in cell–cell signaling in Drosophila. Matrix Biology, 2000, 19, 303-307.	1.5	97
183	BMP Signaling Is Required for Controlling Somatic Stem Cell Self-Renewal in the Drosophila Ovary. Developmental Cell, 2005, 9, 651-662.	3.1	97
184	Signalling pathways initiated by receptor protein tyrosine kinases in Drosophila. Current Opinion in Cell Biology, 1994, 6, 260-266.	2.6	96
185	Applications of High-Throughput RNA Interference Screens to Problems in Cell and Developmental Biology. Genetics, 2007, 175, 7-16.	1.2	94
186	Midgut-Derived Activin Regulates Glucagon-like Action in the Fat Body and Glycemic Control. Cell Metabolism, 2017, 25, 386-399.	7.2	93
187	Evidence for engrailed-Independent wingless Autoregulation in Drosophila. Developmental Biology, 1995, 170, 636-650.	0.9	92
188	Stringent Analysis of Gene Function and Protein–Protein Interactions Using Fluorescently Tagged Genes. Genetics, 2012, 190, 931-940.	1.2	92
189	Opposing Actions of CSW and RasGAP Modulate the Strength of Torso RTK Signaling in the Drosophila Terminal Pathway. Molecular Cell, 1998, 2, 719-727.	4.5	91
190	The maternal effect of lethal(1)discs-large-1: A recessive oncogene of Drosophila melanogaster. Developmental Biology, 1988, 127, 392-407.	0.9	88
191	Processing of <i>Drosophila</i> endo-siRNAs depends on a specific Loquacious isoform. Rna, 2009, 15, 1886-1895.	1.6	88
192	A cyclase-associated protein regulates actin and cell polarity during Drosophila oogenesis and in yeast. Current Biology, 2000, 10, 964-973.	1.8	87
193	Proteomic and Functional Genomic Landscape of Receptor Tyrosine Kinase and Ras to Extracellular Signal–Regulated Kinase Signaling. Science Signaling, 2011, 4, rs10.	1.6	87
194	Krüppel homolog 1 represses insect ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3960-3965.	3.3	87
195	Functional screening identifies miR-315 as a potent activator of Wingless signaling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18151-18156.	3.3	86
196	What fuels the fly: Energy metabolism in <i>Drosophila</i> and its application to the study of obesity and diabetes. Science Advances, 2021, 7, .	4.7	86
197	FlyRNAi: the Drosophila RNAi screening center database. Nucleic Acids Research, 2006, 34, D489-D494.	6.5	85
198	Identification of Neural Outgrowth Genes using Genome-Wide RNAi. PLoS Genetics, 2008, 4, e1000111.	1.5	85

#	Article	IF	CITATIONS
199	The segment polarity phenotype of Drosophila involves differential tendencies toward transformation and cell death. Developmental Biology, 1989, 134, 130-145.	0.9	82
200	Cellular Processes Associated with Germ Band Retraction in Drosophila. Developmental Biology, 2002, 248, 29-39.	0.9	82
201	A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development (Cambridge), 2012, 139, 2821-2831.	1.2	82
202	Multiple functions of a Drosophila homeotic gene, zeste-white 3, during segmentation and neurogenesis. Developmental Biology, 1989, 135, 287-305.	0.9	81
203	ESCRT factors restrict mycobacterial growth. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3070-3075.	3.3	81
204	Large-Scale Transgenic <i>Drosophila</i> Resource Collections for Loss- and Gain-of-Function Studies. Genetics, 2020, 214, 755-767.	1.2	81
205	A pupal lethal mutation with a paternally influenced maternal effect on embryonic development in Drosophila melanogaster. Developmental Biology, 1985, 110, 480-491.	0.9	80
206	Inactivation of Drosophila Huntingtin affects long-term adult functioning and the pathogenesis of a Huntington's disease model. DMM Disease Models and Mechanisms, 2009, 2, 247-266.	1.2	80
207	GLAD: an Online Database of <u>G</u> ene <u>L</u> ist <u>A</u> nnotation for <i><u>D</u>rosophila</i> . Journal of Genomics, 2015, 3, 75-81.	0.6	79
208	CLONAL ANALYSIS OF DOMINANT FEMALE-STERILE, GERMLINE-DEPENDENT MUTATIONS IN <i>DROSOPHILA MELANOGASTER</i> . Genetics, 1984, 108, 927-939.	1.2	79
209	An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling. Cell Reports, 2016, 16, 3062-3074.	2.9	78
210	Xio is a component of the <i>Drosophila</i> sex determination pathway and RNA <i>N</i> ⁶ -methyladenosine methyltransferase complex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3674-3679.	3.3	78
211	Drosophila as a Model for Interorgan Communication: Lessons from Studies on Energy Homeostasis. Developmental Cell, 2011, 21, 29-31.	3.1	77
212	Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and life span in <i>Drosophila</i> . Genes and Development, 2016, 30, 1409-1422.	2.7	77
213	Of flies and men: insights on organismal metabolism from fruit flies. BMC Biology, 2013, 11, 38.	1.7	76
214	Optimized strategy for in vivo Cas9-activation in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9409-9414.	3.3	75
215	Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca2+ signaling in the Drosophila midgut. ELife, 2017, 6, .	2.8	75
216	Serpentine Proteins Slither into the Wingless and Hedgehog Fields. Cell, 1996, 86, 513-516.	13.5	74

#	Article	IF	CITATIONS
217	<scp>CRISPR</scp> guide <scp>RNA</scp> design for research applications. FEBS Journal, 2016, 283, 3232-3238.	2.2	74
218	Sarcomere Formation Occurs by the Assembly of Multiple Latent Protein Complexes. PLoS Genetics, 2010, 6, e1001208.	1.5	73
219	Tailoring the genome: the power of genetic approaches. Nature Genetics, 2003, 33, 276-284.	9.4	72
220	Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry. Proceedings of the United States of America, 2013, 110, 10270-10275.	3.3	71
221	slalom encodes an adenosine 3'-phosphate 5'-phosphosulfate transporter essential for development in Drosophila. EMBO Journal, 2003, 22, 3635-3644.	3.5	68
222	Conserved Regulators of Nucleolar Size Revealed by Global Phenotypic Analyses. Science Signaling, 2013, 6, ra70.	1.6	68
223	High-Throughput RNA Interference Screens in Drosophila Tissue Culture Cells. Methods in Enzymology, 2005, 392, 55-73.	0.4	67
224	CKA, a Novel Multidomain Protein, Regulates the JUN N-Terminal Kinase Signal Transduction Pathway in Drosophila. Molecular and Cellular Biology, 2002, 22, 1792-1803.	1.1	66
225	Molecular Interaction Search Tool (MIST): an integrated resource for mining gene and protein interaction data. Nucleic Acids Research, 2018, 46, D567-D574.	6.5	66
226	SALS, a WH2-Domain-Containing Protein, Promotes Sarcomeric Actin Filament Elongation from Pointed Ends during Drosophila Muscle Growth. Developmental Cell, 2007, 13, 828-842.	3.1	65
227	Precise genome engineering in <i>Drosophila</i> using prime editing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	65
228	Collective nomenclature for LAP proteins. Nature Cell Biology, 2000, 2, E114-E114.	4.6	64
229	Combining Genetic Perturbations and Proteomics to Examine Kinase-Phosphatase Networks in Drosophila Embryos. Developmental Cell, 2014, 31, 114-127.	3.1	64
230	I-Scel Endonuclease, a New Tool for Studying DNA Double-Strand Break Repair Mechanisms in Drosophila. Genetics, 1999, 152, 1037-1044.	1.2	64
231	Pooled genome-wide CRISPR screening for basal and context-specific fitness gene essentiality in Drosophila cells. ELife, 2018, 7, .	2.8	64
232	A transgenic resource for conditional competitive inhibition of conserved Drosophila microRNAs. Nature Communications, 2015, 6, 7279.	5.8	63
233	<i>Drosophila</i> intestinal stem and progenitor cells are major sources and regulators of homeostatic niche signals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12218-12223.	3.3	63
234	Proximityâ€dependent labeling methods for proteomic profiling in living cells: An update. Wiley Interdisciplinary Reviews: Developmental Biology, 2021, 10, e392.	5.9	62

#	ARTICLE	IF	CITATIONS
235	A genome-wide RNA interference screen identifies putative chromatin regulators essential for E2F repression. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9381-9386.	3.3	61
236	The twin spot generator for differential Drosophila lineage analysis. Nature Methods, 2009, 6, 600-602.	9.0	61
237	Resources for Functional Genomics Studies in <i>Drosophila melanogaster</i> . Genetics, 2014, 197, 1-18.	1.2	61
238	DEVELOPMENTAL GENETICS OF THE 2E-F REGION OF THE DROSOPHILA <i>X</i> CHROMOSOME: A REGION RICH IN "DEVELOPMENTALLY IMPORTANT" GENES. Genetics, 1984, 108, 559-572.	1.2	61
239	Region-specific defects in l(1)giant embryos of Drosophila melanogaster. Developmental Biology, 1987, 119, 175-189.	0.9	60
240	RNA interference screening in <i>Drosophila</i> primary cells for genes involved in muscle assembly and maintenance. Development (Cambridge), 2008, 135, 1439-1449.	1.2	60
241	Spatial and temporal organization of signaling pathways. Trends in Biochemical Sciences, 2014, 39, 457-464.	3.7	60
242	In vivo study of gene expression with an enhanced dual-color fluorescent transcriptional timer. ELife, 2019, 8, .	2.8	60
243	Tumor-Derived Ligands Trigger Tumor Growth and Host Wasting via Differential MEK Activation. Developmental Cell, 2019, 48, 277-286.e6.	3.1	59
244	Developmental roles of heparan sulfate proteoglycans in Drosophila. Glycoconjugate Journal, 2002, 19, 363-368.	1.4	58
245	Cellular Phenotype Recognition for High-Content RNA Interference Genome-Wide Screening. Journal of Biomolecular Screening, 2008, 13, 29-39.	2.6	58
246	Receptor Tyrosine Kinases in Drosophila Development. Cold Spring Harbor Perspectives in Biology, 2013, 5, a009050-a009050.	2.3	58
247	Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype. Journal of Cell Biology, 2011, 194, 789-805.	2.3	57
248	Phosphorylation of Beta-3 adrenergic receptor at serine 247 by ERK MAP kinase drives lipolysis in obese adipocytes. Molecular Metabolism, 2018, 12, 25-38.	3.0	57
249	Roles of myosin phosphatase duringDrosophiladevelopment. Development (Cambridge), 2003, 130, 671-681.	1.2	56
250	Dynamic Switch of Negative Feedback Regulation in Drosophila Akt–TOR Signaling. PLoS Genetics, 2010, 6, e1000990.	1.5	56
251	The TORC1-Regulated CPA Complex Rewires an RNA Processing Network to Drive Autophagy and Metabolic Reprogramming. Cell Metabolism, 2018, 27, 1040-1054.e8.	7.2	54
252	Next-generation CRISPR/Cas9 transcriptional activation in <i>Drosophila</i> using flySAM. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4719-4724.	3.3	52

#	Article	IF	CITATIONS
253	Harmonizing model organism data in the Alliance of Genome Resources. Genetics, 2022, 220, .	1.2	52
254	Presenilin Affects Arm/Î ² -Catenin Localization and Function in Drosophila. Developmental Biology, 2000, 227, 450-464.	0.9	51
255	Mechanism of inhibition of the Drosophila and mammalian EGF receptors by the transmembrane protein Kekkon 1. Development (Cambridge), 2003, 130, 4483-4493.	1.2	51
256	<i>Drosophila</i> as a model for context-dependent tumorigenesis. Journal of Cellular Physiology, 2013, 229, n/a-n/a.	2.0	51
257	FlyRNAi.org—the database of the <i>Drosophila</i> RNAi screening center and transgenic RNAi project: 2017 update. Nucleic Acids Research, 2017, 45, D672-D678.	6.5	51
258	Proteomics of protein trafficking by in vivo tissue-specific labeling. Nature Communications, 2021, 12, 2382.	5.8	51
259	mTORC1 promotes cell growth via m6A-dependent mRNA degradation. Molecular Cell, 2021, 81, 2064-2075.e8.	4.5	50
260	Use of a yeast site-specific recombinase to generate embryonic mosaics inDrosophila. Genesis, 1992, 13, 367-375.	3.1	49
261	The Drosophila JNK Pathway Controls the Morphogenesis of the Egg Dorsal Appendages and Micropyle. Developmental Biology, 2001, 237, 282-294.	0.9	49
262	The Drosophila Gene Expression Tool (DGET) for expression analyses. BMC Bioinformatics, 2017, 18, 98.	1.2	49
263	mTORC1-chaperonin CCT signaling regulates m ⁶ A RNA methylation to suppress autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49
264	Mechanism of activation of the <i>Drosophila</i> EGF Receptor by the TGFα ligand Gurken during oogenesis. Development (Cambridge), 2002, 129, 175-186.	1.2	49
265	A Genome-Wide RNAi Screen Identifies Core Components of the G ₂ -M DNA Damage Checkpoint. Science Signaling, 2011, 4, rs1.	1.6	48
266	FlyRNAi.orgthe database of the Drosophila RNAi screening center: 2012 update. Nucleic Acids Research, 2012, 40, D715-D719.	6.5	48
267	Coordinated control of Notch-Delta signalling and cell cycle progression drives lateral inhibition mediated tissue patterning. Development (Cambridge), 2016, 143, 2305-10.	1.2	48
268	Proximityâ€dependent labeling methods for proteomic profiling in living cells. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e272.	5.9	48
269	Function of the ETS transcription factor Yan in border cell migration. Development (Cambridge), 2005, 132, 3493-3504.	1.2	47
270	Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens. Drug Discovery Today, 2007, 12, 28-33.	3.2	47

#	Article	IF	CITATIONS
271	UP-TORR: Online Tool for Accurate and Up-to-Date Annotation of RNAi Reagents. Genetics, 2013, 195, 37-45.	1.2	47
272	HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species. Science Signaling, 2019, 12, .	1.6	47
273	Mammalian and Drosophila Blood: JAK of All Trades?. Cell, 1998, 92, 697-700.	13.5	46
274	Using RNAi to catch Drosophila genes in a web of interactions: insights into cancer research. Oncogene, 2004, 23, 8359-8365.	2.6	46
275	Genome-wide high-throughput screens in functional genomics. Current Opinion in Genetics and Development, 2004, 14, 470-476.	1.5	46
276	Ecdysone signaling at metamorphosis triggers apoptosis of Drosophila abdominal muscles. Developmental Biology, 2013, 383, 275-284.	0.9	46
277	Regulators of Autophagosome Formation in Drosophila Muscles. PLoS Genetics, 2015, 11, e1005006.	1.5	46
278	Quantitative Variations in the Level of MAPK Activity Control Patterning of the Embryonic Termini inDrosophila. Developmental Biology, 1999, 205, 181-193.	0.9	45
279	An Evolutionarily Conserved uORF Regulates PGC1α and Oxidative Metabolism in Mice, Flies, and Bluefin Tuna. Cell Metabolism, 2019, 30, 190-200.e6.	7.2	45
280	Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens. BMC Bioinformatics, 2008, 9, 264.	1.2	44
281	Embryonic multipotent progenitors remodel the <i>Drosophila</i> airways during metamorphosis. Development (Cambridge), 2010, 137, 3615-3624.	1.2	44
282	A computational framework for boosting confidence in high-throughput protein-protein interaction datasets. Genome Biology, 2012, 13, R76.	13.9	44
283	Cross-Species RNAi Rescue Platform in <i>Drosophila melanogaster</i> . Genetics, 2009, 183, 1165-1173.	1.2	43
284	Drosophila as a model system to study autophagy. Seminars in Immunopathology, 2010, 32, 363-372.	2.8	43
285	False negative rates in Drosophila cell-based RNAi screens: a case study. BMC Genomics, 2011, 12, 50.	1.2	43
286	Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. Pediatric Neurology, 2016, 60, 1-12.	1.0	43
287	The Septate Junction Protein Tsp2A Restricts Intestinal Stem Cell Activity via Endocytic Regulation of aPKC and Hippo Signaling. Cell Reports, 2019, 26, 670-688.e6.	2.9	43
288	Regulation of insulin and adipokinetic hormone/glucagon production in flies. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e360.	5.9	43

#	Article	IF	CITATIONS
289	Identification of adult midgut precursors in Drosophila. Gene Expression Patterns, 2011, 11, 12-21.	0.3	42
290	Genetic odyssey to generate marked clones in <i>Drosophila</i> mosaics. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4756-4763.	3.3	42
291	No Evidence that Wnt Ligands Are Required for Planar Cell Polarity in Drosophila. Cell Reports, 2020, 32, 108121.	2.9	42
292	Culture of Drosophila primary cells dissociated from gastrula embryos and their use in RNAi screening. Nature Protocols, 2009, 4, 1502-1512.	5.5	41
293	Homeostasis in Infected Epithelia: Stem Cells Take the Lead. Cell Host and Microbe, 2009, 6, 301-307.	5.1	41
294	Defining the interorgan communication network: systemic coordination of organismal cellular processes under homeostasis and localized stress. Frontiers in Cellular and Infection Microbiology, 2013, 3, 82.	1.8	41
295	Cas9-Based Genome Editing in Drosophila. Methods in Enzymology, 2014, 546, 415-439.	0.4	41
296	Proteomic and Metabolomic Characterization of a Mammalian Cellular Transition from Quiescence to Proliferation. Cell Reports, 2017, 20, 721-736.	2.9	41
297	Endonuclease G promotes autophagy by suppressing mTOR signaling and activating the DNA damage response. Nature Communications, 2021, 12, 476.	5.8	41
298	Activin signaling mediates muscle-to-adipose communication in a mitochondria dysfunction-associated obesity model. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8596-8601.	3.3	41
299	<i>spenito</i> is required for sex determination in <i>Drosophila melanogaster</i> . Proceedings of the United States of America, 2015, 112, 11606-11611.	3.3	40
300	Conserved phosphorylation hotspots in eukaryotic protein domain families. Nature Communications, 2019, 10, 1977.	5.8	39
301	Small Wing PLCÎ ³ Is Required for ER Retention of Cleaved Spitz during Eye Development in Drosophila. Developmental Cell, 2004, 7, 535-545.	3.1	37
302	A Rapid Genome-wide MicroRNA Screen Identifies miR-14 as a Modulator of Hedgehog Signaling. Cell Reports, 2014, 7, 2066-2077.	2.9	37
303	Stress Signaling Between Organs in Metazoa. Annual Review of Cell and Developmental Biology, 2015, 31, 497-522.	4.0	37
304	Comparing CRISPR and RNAi-based screening technologies. Nature Biotechnology, 2016, 34, 621-623.	9.4	36
305	A Mechanism Coupling Systemic Energy Sensing to Adipokine Secretion. Developmental Cell, 2017, 43, 83-98.e6.	3.1	36
306	Intestinal Stem Cells Exhibit Conditional Circadian Clock Function. Stem Cell Reports, 2018, 11, 1287-1301.	2.3	36

#	Article	IF	CITATIONS
307	FlyRNAi.org—the database of the Drosophila RNAi screening center and transgenic RNAi project: 2021 update. Nucleic Acids Research, 2021, 49, D908-D915.	6.5	36
308	A New Enhancer of Position-Effect Variegation in <i>Drosophila melanogaster</i> Encodes a Putative RNA Helicase That Binds Chromosomes and Is Regulated by the Cell Cycle. Genetics, 1997, 146, 951-963.	1.2	36
309	The postsynaptic t-SNARE Syntaxin 4 controls traffic of Neuroligin 1 and Synaptotagmin 4 to regulate retrograde signaling. ELife, 2016, 5, .	2.8	36
310	Yantar, a conserved arginine-rich protein is involved in Drosophila hemocyte development. Developmental Biology, 2004, 273, 48-62.	0.9	35
311	A case study of the reproducibility of transcriptional reporter cell-based RNAi screens in Drosophila. Genome Biology, 2007, 8, R203.	13.9	35
312	Fruit flies on the front line: the translational impact of <i>Drosophila</i> . DMM Disease Models and Mechanisms, 2016, 9, 229-231.	1.2	35
313	Mapping signaling pathway cross-talk in <i>Drosophila</i> cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9940-9945.	3.3	35
314	Accessing the Phenotype Gap: Enabling Systematic Investigation of Paralog Functional Complexity with CRISPR. Developmental Cell, 2017, 43, 6-9.	3.1	35
315	A role for actomyosin contractility in Notch signaling. BMC Biology, 2019, 17, 12.	1.7	35
316	SNP-CRISPR: A Web Tool for SNP-Specific Genome Editing. G3: Genes, Genomes, Genetics, 2020, 10, 489-494.	0.8	35
317	CG14906 (mettl4) mediates m6A methylation of U2 snRNA in Drosophila. Cell Discovery, 2020, 6, 44.	3.1	35
318	Coordination of tumor growth and host wasting by tumor-derived Upd3. Cell Reports, 2021, 36, 109553.	2.9	35
319	Lysosomal cystine mobilization shapes the response of TORC1 and tissue growth to fasting. Science, 2022, 375, eabc4203.	6.0	35
320	Matter Arising: Off-Targets and Genome-Scale RNAi Screens in <i>Drosophila</i> . Fly, 2007, 1, 1-5.	0.9	34
321	A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2. Scientific Reports, 2016, 6, 20471.	1.6	34
322	SIGNAL TRANSDUCTION: Are There Close Encounters Between Signaling Pathways?. Science, 2000, 290, 68-69.	6.0	33
323	Wingless, Hedgehog and Heparan Sulfate Proteoglycans. Development (Cambridge), 2004, 131, 2509-2513.	1.2	33
324	Expanded polyglutamine domain possesses nuclear export activity which modulates subcellular localization and toxicity of polyQ disease protein via exportin-1. Human Molecular Genetics, 2011, 20, 1738-1750.	1.4	33

#	Article	IF	CITATIONS
325	Oncogenic transformation of <i>Drosophila</i> somatic cells induces a functional piRNA pathway. Genes and Development, 2016, 30, 1623-1635.	2.7	33
326	Dissection of the Torso signal transduction pathway inDrosophila. Molecular Reproduction and Development, 1995, 42, 515-522.	1.0	32
327	Online CESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis. BMC Bioinformatics, 2014, 15, 192.	1.2	32
328	Mechanosensitive channels and their functions in stem cell differentiation. Experimental Cell Research, 2019, 374, 259-265.	1.2	32
329	Gene Knock-Ins in <i>Drosophila</i> Using Homology-Independent Insertion of Universal Donor Plasmids. Genetics, 2020, 214, 75-89.	1.2	31
330	The torso pathway in <i>Drosophila:</i> a model system to study receptor tyrosine kinase signal transduction. Development (Cambridge), 1993, 119, 47-56.	1.2	31
331	Role of heparan sulfate proteoglycans in cell signaling and cancer. Advances in Cancer Research, 2001, 83, 67-80.	1.9	30
332	Mutational analysis reveals separable DNA binding and trans-activation of Drosophila STAT92E. Cellular Signalling, 2006, 18, 819-829.	1.7	30
333	miR-263a Regulates ENaC to Maintain Osmotic and Intestinal Stem Cell Homeostasis in Drosophila. Developmental Cell, 2017, 40, 23-36.	3.1	30
334	Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Research Reviews, 2020, 64, 101188.	5.0	30
335	Heparan Sulfate Proteoglycans are critical for the organization of the extracellular distribution of Wingless. Biochemical Society Transactions, 2001, 29, A10-A10.	1.6	29
336	Visualizing and Manipulating Temporal Signaling Dynamics with Fluorescence-Based Tools. Science Signaling, 2014, 7, re1.	1.6	29
337	Mechanism of activation of the Drosophila EGF Receptor by the TGFalpha ligand Gurken during oogenesis. Development (Cambridge), 2002, 129, 175-86.	1.2	29
338	Signal transduction in the early Drosophila embryo: when genetics meets biochemistry. Trends in Biochemical Sciences, 1994, 19, 509-513.	3.7	28
339	High-throughput approaches to dissecting MAPK signaling pathways. Methods, 2006, 40, 262-271.	1.9	28
340	PAPTi: A Peptide Aptamer Interference Toolkit for Perturbation of Protein-Protein Interaction Networks. Scientific Reports, 2013, 3, 1156.	1.6	28
341	The Atg1-Tor pathway regulates yolk catabolism in <i>Drosophila</i> embryos. Development (Cambridge), 2015, 142, 3869-78.	1.2	28
342	Apical polarity proteins recruit the RhoGEF Cysts to promote junctional myosin assembly. Journal of Cell Biology, 2019, 218, 3397-3414.	2.3	28

#	Article	IF	CITATIONS
343	Weckle Is a Zinc Finger Adaptor of the Toll Pathway in Dorsoventral Patterning of the Drosophila Embryo. Current Biology, 2006, 16, 1183-1193.	1.8	27
344	The Homeobox Transcription Factor Cut Coordinates Patterning and Growth During <i>Drosophila</i> Airway Remodeling. Science Signaling, 2013, 6, ra12.	1.6	27
345	Development of an optimized synthetic Notch receptor as an in vivo cell–cell contact sensor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5467-5472.	3.3	27
346	Gene2Function: An Integrated Online Resource for Gene Function Discovery. G3: Genes, Genomes, Genetics, 2017, 7, 2855-2858.	0.8	27
347	Blocking p62-dependent SMN degradation ameliorates spinal muscular atrophy disease phenotypes. Journal of Clinical Investigation, 2018, 128, 3008-3023.	3.9	27
348	Discovery of progenitor cell signatures by time-series synexpression analysis during <i>Drosophila</i> embryonic cell immortalization. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12974-12979.	3.3	26
349	Probe-Seq enables transcriptional profiling of specific cell types from heterogeneous tissue by RNA-based isolation. ELife, 2019, 8, .	2.8	26
350	Drosophila PDGF/VEGF signaling from muscles to hepatocyte-like cells protects against obesity. ELife, 2020, 9, .	2.8	26
351	State-of-the-art CRISPR for in vivo and cell-based studies in Drosophila. Trends in Genetics, 2022, 38, 437-453.	2.9	26
352	Inference of RhoGAP/GTPase regulation using single-cell morphological data from a combinatorial RNAi screen. Genome Research, 2010, 20, 372-380.	2.4	25
353	Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes. Nature Communications, 2021, 12, 2960.	5.8	25
354	Cell patterning in the <i>Drosophila</i> segment: <i>engrailed</i> and <i>wingless</i> antigen distributions in segment polarity mutant embryos. Development (Cambridge), 1993, 119, 105-114.	1.2	25
355	Investigation of leading edge formation at the interface of amnioserosa and dorsal ectoderm in the <i>Drosophila </i> embryo. Development (Cambridge), 2001, 128, 2905-2913.	1.2	25
356	miR-190 Enhances HIF-Dependent Responses to Hypoxia in Drosophila by Inhibiting the Prolyl-4-hydroxylase Fatiga. PLoS Genetics, 2016, 12, e1006073.	1.5	25
357	Downregulation of the tyrosine degradation pathway extends Drosophila lifespan. ELife, 2020, 9, .	2.8	25
358	FlyPhoneDB: an integrated web-based resource for cell–cell communication prediction in <i>Drosophila</i> . Genetics, 2022, 220, .	1.2	25
359	An expanded toolkit for Drosophila gene tagging using synthesized homology donor constructs for CRISPR-mediated homologous recombination. ELife, 0, 11, .	2.8	25
360	RNAiCut: automated detection of significant genes from functional genomic screens. Nature Methods, 2009, 6, 476-477.	9.0	24

#	Article	IF	CITATIONS
361	iProteinDB: An Integrative Database of <i>Drosophila</i> Post-translational Modifications. G3: Genes, Genomes, Genetics, 2019, 9, 1-11.	0.8	24
362	Segmentation of Drosophila RNAI Fluorescence Images Using Level Sets. , 2006, , .		23
363	Wildtype adult stem cells, unlike tumor cells, are resistant to cellular damages in Drosophila. Developmental Biology, 2016, 411, 207-216.	0.9	23
364	Genetic dissection of a complex neurological mutant, polyhomeotic, in Drosophila. Developmental Biology, 1990, 139, 169-185.	0.9	22
365	Our fly cousins' gut. Nature, 2008, 454, 592-593.	13.7	22
366	<i>Drosophila</i> as a model for studying cystic fibrosis pathophysiology of the gastrointestinal system. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10357-10367.	3.3	22
367	Protein visualization and manipulation in Drosophila through the use of epitope tags recognized by nanobodies. ELife, 2022, 11, .	2.8	22
368	Transcriptional and functional motifs defining renal function revealed by single-nucleus RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	22
369	Inducing RNAi in <i>Drosophila</i> Cells by Transfection with dsRNA. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot074351.	0.2	21
370	Drosophila Genome-wide RNAi Screens: Are They Delivering the Promise?. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 141-148.	2.0	20
371	Drosophila Heparan Sulfate, a Novel Design. Journal of Biological Chemistry, 2012, 287, 21950-21956.	1.6	20
372	Core small nuclear ribonucleoprotein particle splicing factor SmD1 modulates RNA interference in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16520-16525.	3.3	20
373	<i>ovoD</i> Co-selection: A Method for Enriching CRISPR/Cas9-Edited Alleles in <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2018, 8, 2749-2756.	0.8	20
374	Clonal analysis of two mutations in the large subunit of RNA polymerase II of Drosophila. Molecular Genetics and Genomics, 1985, 199, 421-426.	2.4	19
375	Serine/threonine protein kinases in Drosophila. Trends in Genetics, 1990, 6, 357-362.	2.9	19
376	Roles of Major Facilitator Superfamily Transporters in Phosphate Response in Drosophila. PLoS ONE, 2012, 7, e31730.	1.1	19
377	eUnaG: a new ligand-inducible fluorescent reporter to detect drug transporter activity in live cells. Scientific Reports, 2017, 7, 41619.	1.6	19
378	An Evolutionarily Conserved Role of Presenilin in Neuronal Protection in the Aging <i>Drosophila</i> Brain. Genetics, 2017, 206, 1479-1493.	1.2	19

#	Article	IF	CITATIONS
379	Zinc Detoxification: A Functional Genomics and Transcriptomics Analysis in <i>Drosophila melanogaster</i> Cultured Cells. G3: Genes, Genomes, Genetics, 2018, 8, 631-641.	0.8	19
380	Differential requirement for STAT by gain-of-function and wild-type receptor tyrosine kinase Torso in Drosophila. Development (Cambridge), 2002, 129, 4241-8.	1.2	19
381	Cas9-Mediated Genome Engineering in <i>Drosophila melanogaster</i> . Cold Spring Harbor Protocols, 2016, 2016, pdb.top086843.	0.2	18
382	Differential requirement for STAT by gain-of-function and wild-type receptor tyrosine kinase Torso in <i>Drosophila</i> . Development (Cambridge), 2002, 129, 4241-4248.	1.2	18
383	A Systems-Level Interrogation Identifies Regulators of Drosophila Blood Cell Number and Survival. PLoS Genetics, 2015, 11, e1005056.	1.5	17
384	Design and Generation of Donor Constructs for Genome Engineering in <i>Drosophila</i> . Cold Spring Harbor Protocols, 2016, 2016, pdb.prot090787.	0.2	17
385	DRscDB: A single-cell RNA-seq resource for data mining and data comparison across species. Computational and Structural Biotechnology Journal, 2021, 19, 2018-2026.	1.9	17
386	A Genome-Wide Gene Function Prediction Resource for Drosophila melanogaster. PLoS ONE, 2010, 5, e12139.	1.1	17
387	Intestinal response to dietary manganese depletion in <i>Drosophila</i> . Metallomics, 2020, 12, 218-240.	1.0	16
388	Fat Body p53 Regulates Systemic Insulin Signaling and Autophagy under Nutrient Stress via Drosophila Upd2 Repression. Cell Reports, 2020, 33, 108321.	2.9	16
389	An image score inference system for RNAi genome-wide screening based on fuzzy mixture regression modeling. Journal of Biomedical Informatics, 2009, 42, 32-40.	2.5	15
390	<i>Drosophila melanogaster</i> : a simple system for understanding complexity. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	15
391	The role of translationally controlled tumor protein in proliferation of <i>Drosophila</i> intestinal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26591-26598.	3.3	15
392	Identification of Autosomal Regions Involved in Drosophila Raf Function. Genetics, 2000, 156, 763-774.	1.2	15
393	Cancer cachexia: lessons from <i>Drosophila</i> . DMM Disease Models and Mechanisms, 2022, 15, .	1.2	15
394	Sending all the right signals. Nature, 1998, 396, 18-19.	13.7	14
395	Genetic Determinants of Phosphate Response in Drosophila. PLoS ONE, 2013, 8, e56753.	1.1	14
396	Interspecies analysis of MYC targets identifies tRNA synthetases as mediators of growth and survival in MYC-overexpressing cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14614-14619.	3.3	14

#	Article	IF	CITATIONS
397	An in vivo RNAi screen uncovers the role of AdoR signaling and adenosine deaminase in controlling intestinal stem cell activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 464-471.	3.3	14
398	Pooled CRISPR Screens in Drosophila Cells. Current Protocols in Molecular Biology, 2019, 129, e111.	2.9	13
399	Defining cell types and lineage in the Drosophila midgut using single cell transcriptomics. Current Opinion in Insect Science, 2021, 47, 12-17.	2.2	13
400	Drosophila as a Model for Tumor-Induced Organ Wasting. Advances in Experimental Medicine and Biology, 2019, 1167, 191-205.	0.8	13
401	Fishing for morphogens. Nature, 2001, 411, 533-536.	13.7	12
402	Design and Generation of <i>Drosophila</i> Single Guide RNA Expression Constructs. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot090779.	0.2	12
403	Thermogenesis by THADA. Developmental Cell, 2017, 41, 1-2.	3.1	12
404	Synthetic Lethality Screens Using RNAi in Combination with CRISPR-based Knockout in Drosophila Cells. Bio-protocol, 2017, 7, .	0.2	12
405	Morphogen diffusion: the case of the Wingless protein. Nature Cell Biology, 2000, 2, E79-E81.	4.6	11
406	Where gene discovery turns into systems biology: genome-scale RNAi screens inDrosophila. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 471-478.	6.6	11
407	Detection of Indel Mutations in <i>Drosophila</i> by High-Resolution Melt Analysis (HRMA). Cold Spring Harbor Protocols, 2016, 2016, pdb.prot090795.	0.2	11
408	Inducing RNAi in <i>Drosophila</i> Cells by Soaking with dsRNA. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080747.	0.2	10
409	Methods and tools for spatial mapping of single-cell RNAseq clusters in <i>Drosophila</i> . Genetics, 2021, 217, .	1.2	10
410	Drosophila Wnt/Fz Pathways. Science Signaling, 2005, 2005, cm5-cm5.	1.6	9
411	Hedgehog and Wingless stabilize but do not induce cell fate during <i>Drosophila</i> dorsal embryonic epidermal patterning. Development (Cambridge), 2008, 135, 2767-2775.	1.2	9
412	Primary Cell Cultures from Drosophila Gastrula Embryos. Journal of Visualized Experiments, 2011, , .	0.2	9
413	BioLitMine: Advanced Mining of Biomedical and Biological Literature About Human Genes and Genes from Major Model Organisms. G3: Genes, Genomes, Genetics, 2020, 10, 4531-4539.	0.8	9
414	TIMEOR: a web-based tool to uncover temporal regulatory mechanisms from multi-omics data. Nucleic Acids Research, 2021, 49, W641-W653.	6.5	9

#	Article	IF	CITATIONS
415	Super-size flies. Cell Metabolism, 2005, 1, 288-290.	7.2	8
416	Realizing the Promise of RNAi High Throughput Screening. Developmental Cell, 2010, 18, 506-507.	3.1	8
417	Improved detection of synthetic lethal interactions in <i>Drosophila</i> cells using variable dose analysis (VDA). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10755-E10762.	3.3	8
418	A genetic model of methionine restriction extends <i>Drosophila</i> health- and lifespan. Proceedings of the United States of America, 2021, 118, .	3.3	8
419	All for one, and one for all: the clonality of the intestinal stem cell niche. F1000 Biology Reports, 2010, 2, 73.	4.0	8
420	The Yun/Prohibitin complex regulates adult <i>Drosophila</i> intestinal stem cell proliferation through the transcription factor E2F1. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
421	Sex determination: Co-opted signals determine gender. Current Biology, 2000, 10, R682-R684.	1.8	7
422	Intelligent Interfaces for Mining Large-Scale RNAi-HCS Image Databases. , 2007, 2007, 1333-1337.		7
423	Mesoscopic Fluorescence Tomography for In-vivo Imaging of Developing Drosophila . Journal of Visualized Experiments, 2009, , .	0.2	7
424	The era of systems developmental biology. Current Opinion in Genetics and Development, 2011, 21, 681-683.	1.5	7
425	Reagent and Data Resources for Investigation of RNA Binding Protein Functions in Drosophila melanogaster Cultured Cells. G3: Genes, Genomes, Genetics, 2015, 5, 1919-1924.	0.8	7
426	Understanding cellular signaling and systems biology with precision: A perspective from ultrastructure and organelle studies in the Drosophila midgut. Current Opinion in Systems Biology, 2018, 11, 24-31.	1.3	7
427	The Multidimensional Organization of Interorgan Communication Networks. Developmental Cell, 2019, 50, 395-396.	3.1	7
428	Paradigms to Study Signal Transduction Pathways in Drosophila. Current Topics in Developmental Biology, 1997, 35, 229-261.	1.0	6
429	Drosophila genome takes flight. Nature Cell Biology, 2000, 2, E53-E54.	4.6	6
430	Unconventional ways to travel. Nature Cell Biology, 2002, 4, E211-E212.	4.6	6
431	PPIRank - an advanced method for ranking protein-protein interations in TAP/MS data. Proteome Science, 2013, 11, S16.	0.7	6
432	Drosophila developmental biology methods. Methods, 2014, 68, 1.	1.9	6

#	Article	IF	CITATIONS
433	Endocrine Regulation of Energy Balance by <i>Drosophila</i> TGFâ€Î²/Activins. BioEssays, 2018, 40, e1800044.	1.2	6
434	Use of the CRISPR as9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes. Current Protocols in Molecular Biology, 2020, 130, e112.	2.9	6
435	A <i>Drosophila</i> model of oral peptide therapeutics for adult Intestinal Stem Cell tumors. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	6
436	Metabolic decisions in development and disease—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 55-73.	1.8	6
437	Specificity of Receptor Tyrosine Kinase Signaling Pathways: Lessons from Drosophila. , 1997, 19, 167-182.		6
438	Use of a label-free quantitative platform based on MS/MS average TIC to calculate dynamics of protein complexes in insulin signaling. Journal of Biomolecular Techniques, 2009, 20, 272-7.	0.8	6
439	A salivary gland-secreted peptide regulates insect systemic growth. Cell Reports, 2022, 38, 110397.	2.9	6
440	Trans-omics analysis of insulin action reveals a cell growth subnetwork which co-regulates anabolic processes. IScience, 2022, 25, 104231.	1.9	6
441	CRISPR-based engineering of gene knockout cells by homology-directed insertion in polyploid Drosophila S2R+ cells. Nature Protocols, 2020, 15, 3478-3498.	5.5	5
442	Cross-species identification of PIP5K1-, splicing- and ubiquitin-related pathways as potential targets for RB1-deficient cells. PLoS Genetics, 2021, 17, e1009354.	1.5	5
443	Roles of Insect Oenocytes in Physiology and Their Relevance to Human Metabolic Diseases. Frontiers in Insect Science, 2022, 2, .	0.9	5
444	Approaches to identify genes involved inDrosophila embryonic CNS development. Journal of Neurobiology, 1993, 24, 701-722.	3.7	3
445	Preparation of Drosophila Larval Blood Cells for Single-cell RNA Sequencing. Bio-protocol, 2021, 11, e4127.	0.2	3
446	High-Resolution Modeling of Cellular Signaling Networks. , 2008, , 257-271.		3
447	Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos. Nature Communications, 2021, 12, 6825.	5.8	3
448	Genes Involved in Postembryonic Cell Proliferation in Drosophila. , 1996, , 363-400.		2
449	Do-it-yourself RNAi made easy?. Nature Methods, 2007, 4, 308-309.	9.0	2
450	Analyzing the Structure, Function and Information Flow in Signaling Networks using Quantitative Cellular Signatures. , 2013, , 89-113.		2

#	Article	IF	CITATIONS
451	Open questions: completing the parts list and finding the integrating signals. BMC Biology, 2017, 15, 47.	1.7	2
452	Response to "Problems with LAP nomenclature― Nature Cell Biology, 2001, 3, E90-E90.	4.6	1
453	Online Phenotype Discovery in High-Content RNAi Screens using Gap Statistics. AlP Conference Proceedings, 2007, , .	0.3	1
454	Steroids Make You Bigger? Fat Chance Says Myc. Cell Metabolism, 2010, 12, 7-9.	7.2	1
455	Toward a Systems Understanding of Signaling Pathway Function. Current Topics in Developmental Biology, 2016, 117, 221-236.	1.0	1
456	Prime Time for the Drosophila JAK/STAT Pathway. , 2003, , 87-104.		1
457	The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Journal of Cell Science, 2010, 123, e1-e1.	1.2	1
458	A Cell Atlas of the Adult Drosophila Midgut. SSRN Electronic Journal, 0, , .	0.4	1
459	Interorgan crosstalk and metabolism regulation in Drosophila. FASEB Journal, 2022, 36, .	0.2	1
460	Glycosylation and Notch signaling. Biochemical Society Transactions, 2001, 29, A42-A42.	1.6	0
461	Liz and Norbert at the movies. Development (Cambridge), 2003, 130, 5556-5557.	1.2	Ο
462	Norbert Perrimon. Current Biology, 2005, 15, R481-R482.	1.8	0
463	An advanced method for identifying protein-protein interaction by analyzing TAP/MS data. , 2012, , .		0
464	A sharp end to sugary Wingless travels. Journal of Cell Biology, 2014, 206, 819-821.	2.3	0
465	Inferring genetic architecture from systems genetics studies. , 0, , 139-160.		Ο
466	Functional Genomics Screens in Drosophila Cells. , 2018, , 165-191.		0
467	CRISPR-Based Perturbation of Gene Function in Drosophila Cells. , 2018, , 193-206.		0
468	Expanding the horizons of genome editing in the fruit fly with Cas12a. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24019-24021.	3.3	0

#	Article	IF	CITATIONS
469	Developmental Signaling: JNK Pathway in Drosophila Morphogenesis. , 2003, , 783-787.		0
470	Intersecting High-Throughput Screens Identifies SERCA As a Target for Modulating NOTCH1 In Hematopoietic Malignancies. Blood, 2011, 118, 555-555.	0.6	0
471	DmRaf. , 1995, , 331-332.		0
472	The Atg1-Tor pathway regulates yolk catabolism in <i>Drosophila</i> embryos. Journal of Cell Science, 2015, 128, e1.1-e1.1.	1.2	0
473	Loss of CDK4/6 Activity Is Synthetic Lethal with VHL Inactivation in Clear Cell Renal Cell Carcinoma. FASEB Journal, 2019, 33, 674.9.	0.2	0
474	Probe-Seq: Method for RNA Sequencing of Specific Cell Types from Animal Tissue. Bio-protocol, 2020, 10, e3749.	0.2	0