
Thomas Pichler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12173334/publications.pdf Version: 2024-02-01

THOMAS PICHLED

#	Article	IF	CITATIONS
1	Cadmium in soils and groundwater: A review. Applied Geochemistry, 2019, 108, 104388.	3.0	602
2	Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochimica Et Cosmochimica Acta, 2011, 75, 1088-1123.	3.9	185
3	The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Marine Chemistry, 1999, 64, 229-252.	2.3	134
4	Chemistry of hot springs along the Eastern Lau Spreading Center. Geochimica Et Cosmochimica Acta, 2011, 75, 1013-1038.	3.9	121
5	Natural Input of Arsenic into a Coral-Reef Ecosystem by Hydrothermal Fluids and Its Removal by Fe(III) Oxyhydroxides. Environmental Science & Technology, 1999, 33, 1373-1378.	10.0	120
6	Mineralogy of a natural As-rich hydrous ferric oxide coprecipitate formed by mixing of hydrothermal fluid and seawater: Implications regarding surface complexation and color banding in ferrihydrite deposits. American Mineralogist, 2001, 86, 834-851.	1.9	117
7	Competitive adsorption of As(III), As(V), Sb(III) and Sb(V) onto ferrihydrite in multi-component systems: Implications for mobility and distribution. Journal of Hazardous Materials, 2017, 330, 142-148.	12.4	110
8	Development of a magnetic core-shell Fe3O4@TA@UiO-66 microsphere for removal of arsenic(III) and antimony(III) from aqueous solution. Journal of Hazardous Materials, 2019, 378, 120721.	12.4	108
9	Distribution, speciation and bioavailability of arsenic in a shallow-water submarine hydrothermal system, Tutum Bay, Ambitle Island, PNG. Chemical Geology, 2005, 224, 122-135.	3.3	101
10	Microbial Mineral Weathering for Nutrient Acquisition Releases Arsenic. Applied and Environmental Microbiology, 2009, 75, 2558-2565.	3.1	95
11	Abundance and mineralogical association of arsenic in the Suwannee Limestone (Florida): Implications for arsenic release during water–rock interaction. Chemical Geology, 2006, 228, 44-56.	3.3	92
12	Process-Based Reactive Transport Model To Quantify Arsenic Mobility during Aquifer Storage and Recovery of Potable Water. Environmental Science & Technology, 2011, 45, 6924-6931.	10.0	90
13	Sequential and simultaneous adsorption of Sb(III) and Sb(V) on ferrihydrite: Implications for oxidation and competition. Chemosphere, 2016, 145, 55-60.	8.2	86
14	Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea. Chemical Geology, 1999, 162, 15-31.	3.3	83
15	Geochemistry of Champagne Hot Springs shallow hydrothermal vent field and associated sediments, Dominica, Lesser Antilles. Chemical Geology, 2005, 224, 55-68.	3.3	83
16	Relationship between Pyrite Stability and Arsenic Mobility During Aquifer Storage and Recovery in Southwest Central Florida. Environmental Science & Technology, 2007, 41, 723-730.	10.0	81
17	Removing Heavy Metals in Water: The Interaction of Cactus Mucilage and Arsenate (As (V)). Environmental Science & Technology, 2012, 46, 4553-4559.	10.0	81
18	Processes influencing extreme As enrichment in shallow-sea hydrothermal fluids of Milos Island, Greece. Chemical Geology, 2013, 348, 15-26.	3.3	81

THOMAS PICHLER

#	Article	IF	CITATIONS
19	Chitosan functionalized iron nanosheet for enhanced removal of As(III) and Sb(III): Synergistic effect and mechanism. Chemical Engineering Journal, 2020, 382, 122999.	12.7	72
20	Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separation. Frontiers in Microbiology, 2013, 4, 158.	3.5	70
21	Hydrothermal venting within a coral reef ecosystem, Ambitle Island, Papua New Guinea. Geology, 1996, 24, 435.	4.4	65
22	Molecular evidence for abiotic sulfurization of dissolved organic matter in marine shallow hydrothermal systems. Geochimica Et Cosmochimica Acta, 2016, 190, 35-52.	3.9	60
23	Submarine venting of magmatic volatiles in the Eastern Manus Basin, Papua New Guinea. Geochimica Et Cosmochimica Acta, 2015, 163, 178-199.	3.9	59
24	High crystallinity Si-ferrihydrite: An insight into its Néel temperature and size dependence of magnetic properties. Journal of Geophysical Research, 2007, 112, .	3.3	56
25	Arsenic in marine hydrothermal fluids. Chemical Geology, 2013, 348, 2-14.	3.3	56
26	Fe sulfide formation due to seawater-gas-sediment interaction in a shallow-water hydrothermal system at Lihir Island, Papua New Guinea. Economic Geology, 1999, 94, 281-288.	3.8	52
27	Cadmium in groundwater â^' A synopsis based on a large hydrogeochemical data set. Science of the Total Environment, 2019, 689, 831-842.	8.0	52
28	Geothermal systems on the island of Java, Indonesia. Journal of Volcanology and Geothermal Research, 2014, 285, 47-59.	2.1	50
29	Closer Look at As(III) and As(V) Adsorption onto Ferrihydrite under Competitive Conditions. Langmuir, 2014, 30, 11110-11116.	3.5	40
30	Subsurface hydrothermal processes and the bioenergetics of chemolithoautotrophy at the shallow-sea vents off Panarea Island (Italy). Chemical Geology, 2015, 407-408, 21-45.	3.3	39
31	The precipitation of aragonite from shallow-water hydrothermal fluids in a coral reef, Tutum Bay, Ambitle Island, Papua New Guinea. Chemical Geology, 2004, 207, 31-45.	3.3	35
32	Enhanced geochemical gradients in a marine shallow-water hydrothermal system: Unusual arsenic speciation in horizontal and vertical pore water profiles. Applied Geochemistry, 2007, 22, 2595-2605.	3.0	35
33	Stable and radiogenic isotopes as tracers for the origin, mixing and subsurface history of fluids in submarine shallow-water hydrothermal systems. Journal of Volcanology and Geothermal Research, 2005, 139, 211-226.	2.1	32
34	Naturally occurring arsenic in the Miocene Hawthorn Group, southwestern Florida: Potential implication for phosphate mining. Applied Geochemistry, 2007, 22, 953-973.	3.0	31
35	Enhanced bioaccumulation and biotransformation of As in coral reef organisms surrounding a marine shallow-water hydrothermal vent system. Chemical Geology, 2013, 348, 48-55.	3.3	28
36	Understanding arsenic behavior in carbonate aquifers: Implications for aquifer storage and recovery (ASR). Applied Geochemistry, 2015, 52, 57-66.	3.0	27

THOMAS PICHLER

#	Article	IF	CITATIONS
37	Geochemistry of hot-springs at the SuSu Knolls hydrothermal field, Eastern Manus Basin: Advanced argillic alteration and vent fluid acidity. Geochimica Et Cosmochimica Acta, 2019, 255, 25-48.	3.9	27
38	Interaction between iron and dissolved organic matter in a marine shallow hydrothermal system off Dominica Island (Lesser Antilles). Marine Chemistry, 2015, 177, 677-686.	2.3	26
39	Distribution and mobility of geogenic molybdenum and arsenic in a limestone aquifer matrix. Applied Geochemistry, 2015, 63, 623-633.	3.0	25
40	Cadmium Background Levels in Groundwater in an Area Dominated by Agriculture. Integrated Environmental Assessment and Management, 2020, 16, 103-113.	2.9	21
41	A natural laboratory to study arsenic geobiocomplexity. Eos, 2006, 87, 221.	0.1	20
42	Geogenic As and Mo groundwater contamination caused by an abundance of domestic supply wells. Applied Geochemistry, 2017, 77, 68-79.	3.0	20
43	Arsenic occurrence and speciation in Cyclope neritea, a gastropod inhabiting the arsenic-rich marine shallow-water hydrothermal system off Milos Island, Greece. Chemical Geology, 2013, 348, 56-64.	3.3	19
44	Changes in Benthic Macrofauna Associated with a Shallow-Water Hydrothermal Vent Gradient in Papua New Guinea. Pacific Science, 2010, 64, 391-404.	0.6	18
45	Geochemical characteristics, speciation and size-fractionation of iron (Fe) in two marine shallow-water hydrothermal systems, Dominica, Lesser Antilles. Chemical Geology, 2017, 454, 44-53.	3.3	18
46	Arsenic abundance and variation in golf course lakes. Science of the Total Environment, 2008, 394, 313-320.	8.0	17
47	Submarine groundwater discharge within a landslide scar at the French Mediterranean coast. Estuarine, Coastal and Shelf Science, 2017, 198, 128-137.	2.1	17
48	Boron isotope variations in geothermal systems on Java, Indonesia. Journal of Volcanology and Geothermal Research, 2016, 311, 1-8.	2.1	16
49	Generating false negatives and false positives for As and Mo concentrations in groundwater due to well installation. Science of the Total Environment, 2018, 631-632, 723-732.	8.0	16
50	Manganese (Mn) Concentrations and the Mn-Fe Relationship in Shallow Groundwater: Implications for Groundwater Monitoring. Soil Systems, 2020, 4, 49.	2.6	16
51	Competitive Adsorption of As(III) and As(V) by Ferrihydrite: Equilibrium, Kinetics, and Surface Complexation. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	15
52	Long-term performance of a constructed wetland/filter basin system treating wastewater, Central Florida. Chemical Geology, 2010, 269, 137-152.	3.3	14
53	Simultaneous speciation analysis of As, Sb and Se redox couples by SF-ICP-MS coupled to HPLC. Analytical Methods, 2014, 6, 5112-5119.	2.7	13
54	Determination of ultra-low volatile mercury concentrations in sulfur-rich gases and liquids. Talanta, 2019, 199, 277-284.	5.5	13

THOMAS PICHLER

#	Article	IF	CITATIONS
55	Arsenic bioaccumulation and biotransformation in deep-sea hydrothermal vent organisms from the PACMANUS hydrothermal field, Manus Basin, PNG. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 117, 95-106.	1.4	10
56	Mercury in the hydrothermal fluids and gases in Paleochori Bay, Milos, Greece. Marine Chemistry, 2021, 233, 103984.	2.3	9
57	Bacterial Diversity and Biogeochemistry of Two Marine Shallow-Water Hydrothermal Systems off Dominica (Lesser Antilles). Frontiers in Microbiology, 2017, 8, 2400.	3.5	8
58	Preservation of co-occurring As, Sb and Se species in water samples with EDTA and acidification. Geochemistry: Exploration, Environment, Analysis, 2016, 16, 117-125.	0.9	7
59	Hydrothermal areas, microbial mats and sea grass in Paleochori Bay, Milos, Greece. Journal of Maps, 2020, 16, 348-356.	2.0	6
60	?34S isotope values of dissolved sulfate (SO42?) as a tracer for battery acid (H2SO4) contamination in groundwater. Environmental Geology, 2005, 47, 215-224.	1.2	5
61	Geothermal systems on the island of Bali, Indonesia. Journal of Volcanology and Geothermal Research, 2015, 304, 349-358.	2.1	5
62	Evaluating Complex Hydrogeological Settings in a Constructed Wetland: An Isotopic/Chemical Mass Balance Approach. Wetlands, 2011, 31, 521-534.	1.5	4
63	Consideration of geological aspects and geochemical parameters of fluids in Bushdi geothermal field, south of mount Sabalan, NW Iran. Journal of African Earth Sciences, 2017, 129, 692-700.	2.0	4
64	Optimization and assessment of a sequential extraction procedure for calcium carbonate rocks. Environmental Monitoring and Assessment, 2021, 193, 577.	2.7	4
65	Hg in the hydrothermal fluids and gases in Baia di Levante, Vulcano, Italy. Marine Chemistry, 2022, 244, 104147.	2.3	1
66	Reply to a comment on "The distribution and mobility of geogenic molybdenum and arsenic in a limestone aquifer matrix― Applied Geochemistry, 2017, 77, 215-218.	3.0	0