
Alessio Miatto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1217109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1880-1885.	3.3	409
2	Global Material Flows and Resource Productivity: Forty Years of Evidence. Journal of Industrial Ecology, 2018, 22, 827-838.	2.8	232
3	A spatial analysis of material stock accumulation and demolition waste potential of buildings: A case study of Padua. Resources, Conservation and Recycling, 2019, 142, 245-256.	5.3	86
4	United States plastics: Large flows, short lifetimes, and negligible recycling. Resources, Conservation and Recycling, 2021, 167, 105440.	5.3	84
5	How important are realistic building lifespan assumptions for material stock and demolition waste accounts?. Resources, Conservation and Recycling, 2017, 122, 143-154.	5.3	82
6	Global Patterns and Trends for Nonâ€Metallic Minerals used for Construction. Journal of Industrial Ecology, 2017, 21, 924-937.	2.8	80
7	Modeling material flows and stocks of the road network in the United States 1905–2015. Resources, Conservation and Recycling, 2017, 127, 168-178.	5.3	62
8	Extending or ending the life of residential buildings in Japan: A social circular economy approach to the problem of short-lived constructions. Journal of Cleaner Production, 2019, 231, 660-670.	4.6	52
9	Prospects for a saturation of humanity's resource use? An analysis of material stocks and flows in nine world regions from 1900 to 2035. Global Environmental Change, 2021, 71, 102410.	3.6	48
10	The expansion of the built environment, waste generation and EU recycling targets on Samothraki, Greece: An island's dilemma. Resources, Conservation and Recycling, 2019, 150, 104405.	5.3	42
11	Spatially explicit material stock analysis of buildings in Eastern China metropoles. Resources, Conservation and Recycling, 2019, 146, 45-54.	5.3	38
12	A spatiotemporal urban metabolism model for the Canberra suburb of Braddon in Australia. Journal of Cleaner Production, 2020, 265, 121770.	4.6	38
13	Estimating the Material Stock of Roads: The Vietnamese Case Study. Journal of Industrial Ecology, 2019, 23, 663-673.	2.8	30
14	Alloy information helps prioritize material criticality lists. Nature Communications, 2022, 13, 150.	5.8	30
15	Urban development and sustainability challenges chronicled by a century of construction material flows and stocks in Tiexi, China. Journal of Industrial Ecology, 2021, 25, 162-175.	2.8	28
16	The rise and fall of American lithium. Resources, Conservation and Recycling, 2020, 162, 105034.	5.3	26
17	A framework of indicators for associating material stocks and flows to service provisioning: Application for Japan 1990–2015. Journal of Cleaner Production, 2021, 285, 125450.	4.6	25
18	Transferability of Material Composition Indicators for Residential Buildings: A Conceptual Approach Based on a Germanâ€Japanese Comparison. Journal of Industrial Ecology, 2019, 23, 796-807.	2.8	19

ALESSIO MIATTO

#	Article	IF	CITATIONS
19	The urbanisation-environment conflict: Insights from material stock and productivity of transport infrastructure in Hanoi, Vietnam. Journal of Environmental Management, 2021, 294, 113007.	3.8	19
20	Uncertain Future of American Lithium: A Perspective until 2050. Environmental Science & Technology, 2021, 55, 16184-16194.	4.6	19
21	Lost Material Stock in Buildings due to Sea Level Rise from Global Warming: The Case of Fiji Islands. Sustainability, 2020, 12, 834.	1.6	15
22	Patterns and features of embodied environmental flow networks in the international trade of metal resources: A study of aluminum. Resources Policy, 2022, 77, 102767.	4.2	13
23	Estimating the total in-use stock of Laos using dynamic material flow analysis and nighttime light. Resources, Conservation and Recycling, 2021, 170, 105608.	5.3	12
24	U.S. Cobalt: A Cycle of Diverse and Important Uses. Resources, Conservation and Recycling, 2022, 184, 106441.	5.3	11
25	On the importance of linking inputs and outputs in material flow accounts. The Weight of Nations report revisited. Journal of Cleaner Production, 2018, 204, 334-343.	4.6	9
26	Alloy Profusion, Spice Metals, and Resource Loss by Design. Sustainability, 2022, 14, 7535.	1.6	7
27	Data on the domestic processed output, balancing items, and solid waste potential for five major world economies. Data in Brief, 2019, 22, 662-675.	0.5	5
28	Tracking the material cycle of Italian bricks with the aid of building information modeling. Journal of Industrial Ecology, 2022, 26, 609-626.	2.8	4
29	Estimation of Mining and Landfilling Activities with Associated Overburden through Satellite Data: Germany 2000–2010. Resources, 2019, 8, 126.	1.6	2
30	Anthropogenic Disturbance by Domestic Extraction of Gold Mining in Mongolia. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2019, 75, II_285-II_290.	0.1	0