Jun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1217018/publications.pdf

Version: 2024-02-01

315739 304743 1,547 44 22 38 citations h-index g-index papers 44 44 44 2064 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2204-2215.	3.8	133
2	DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicology and Applied Pharmacology, 2012, 264, 13-22.	2.8	114
3	Hepatic mitochondrial DNA/Tollâ€like receptor 9/MicroRNAâ€223 forms a negative feedback loop to limit neutrophil overactivation and acetaminophen hepatotoxicity in mice. Hepatology, 2017, 66, 220-234.	7.3	106
4	Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion. Toxicology and Applied Pharmacology, 2015, 289, 163-176.	2.8	99
5	MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in hepatocellular carcinogenesis. International Journal of Oncology, 2014, 44, 1915-1922.	3 . 3	74
6	Hotair facilitates hepatic stellate cells activation and fibrogenesis in the liver. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 674-686.	3.8	73
7	Blockade of YAP alleviates hepatic fibrosis through accelerating apoptosis and reversion of activated hepatic stellate cells. Molecular Immunology, 2019, 107, 29-40.	2.2	63
8	Wogonin attenuates inflammation by activating PPAR- \hat{I}^3 in alcoholic liver disease. International Immunopharmacology, 2017, 50, 95-106.	3.8	51
9	PSTPIP2 connects DNA methylation to macrophage polarization in CCL4-induced mouse model of hepatic fibrosis. Oncogene, 2018, 37, 6119-6135.	5.9	48
10	Suppression of SUN2 by DNA methylation is associated with HSCs activation and hepatic fibrosis. Cell Death and Disease, 2018, 9, 1021.	6.3	46
11	Methylation of Septin9 mediated by DNMT3a enhances hepatic stellate cells activation and liver fibrogenesis. Toxicology and Applied Pharmacology, 2017, 315, 35-49.	2.8	45
12	NLRC5 regulates TGF-Î ² 1-induced proliferation and activation of hepatic stellate cells during hepatic fibrosis. International Journal of Biochemistry and Cell Biology, 2016, 70, 92-104.	2.8	43
13	Methylation of RCAN1.4 mediated by DNMT1 and DNMT3b enhances hepatic stellate cell activation and liver fibrogenesis through Calcineurin/NFAT3 signaling. Theranostics, 2019, 9, 4308-4323.	10.0	40
14	HMGA2, a driver of inflammation, is associated with hypermethylation in acute liver injury. Toxicology and Applied Pharmacology, 2017, 328, 34-45.	2.8	37
15	Wogonin attenuates liver fibrosis via regulating hepatic stellate cell activation and apoptosis. International Immunopharmacology, 2019, 75, 105671.	3.8	37
16	Hesperetin derivative-14 alleviates inflammation by activating PPAR-Î ³ in mice with CCl4-induced acute liver injury and LPS-treated RAW264.7 cells. Toxicology Letters, 2017, 274, 51-63.	0.8	34
17	Transmembrane protein 88 attenuates liver fibrosis by promoting apoptosis and reversion of activated hepatic stellate cells. Molecular Immunology, 2016, 80, 58-67.	2.2	32
18	Role of NLRC5 in progression and reversal of hepatic fibrosis. Toxicology and Applied Pharmacology, 2016, 294, 43-53.	2.8	32

#	Article	IF	CITATIONS
19	Hesperetin derivative attenuates CCl4-induced hepatic fibrosis and inflammation by Gli-1-dependent mechanisms. International Immunopharmacology, 2019, 76, 105838.	3.8	31
20	Epigenetic silencing of LncRNA ANRIL enhances liver fibrosis and HSC activation through activating AMPK pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 2677-2687.	3.6	31
21	The Long Non-coding RNA MEG3/miR-let-7c-5p Axis Regulates Ethanol-Induced Hepatic Steatosis and Apoptosis by Targeting NLRC5. Frontiers in Pharmacology, 2018, 9, 302.	3.5	30
22	PTP1B confers liver fibrosis by regulating the activation of hepatic stellate cells. Toxicology and Applied Pharmacology, 2016, 292, 8-18.	2.8	28
23	Role of histone deacetylases(HDACs) in progression and reversal of liver fibrosis. Toxicology and Applied Pharmacology, 2016, 306, 58-68.	2.8	25
24	Hesperitin derivative-11 suppress hepatic stellate cell activation and proliferation by targeting PTEN/AKT pathway. Toxicology, 2017, 381, 75-86.	4.2	25
25	DNA Methylation of PTGIS Enhances Hepatic Stellate Cells Activation and Liver Fibrogenesis. Frontiers in Pharmacology, 2018, 9, 553.	3.5	23
26	NLRC5: A paradigm for NLRs in immunological and inflammatory reaction. Cancer Letters, 2019, 451, 92-99.	7.2	23
27	SENP2 alleviates CCl4-induced liver fibrosis by promoting activated hepatic stellate cell apoptosis and reversion. Toxicology Letters, 2018, 289, 86-98.	0.8	22
28	Relevance function of microRNA-708 in the pathogenesis of cancer. Cellular Signalling, 2019, 63, 109390.	3.6	21
29	Circular RNA as a Novel Biomarker and Therapeutic Target for HCC. Cells, 2022, 11, 1948.	4.1	21
30	Hesperetin derivative-16 attenuates CCl4-induced inflammation and liver fibrosis by activating AMPK/SIRT3 pathway. European Journal of Pharmacology, 2022, 915, 174530.	3.5	19
31	TMEM88 mediates inflammatory cytokines secretion by regulating JNK/P38 and canonical Wnt/ \hat{l}^2 -catenin signaling pathway in LX-2 cells. Inflammopharmacology, 2018, 26, 1339-1348.	3.9	16
32	\hat{I}^2 -Arrestin 2 Promotes Hepatocyte Apoptosis by Inhibiting Akt Pathway in Alcoholic Liver Disease. Frontiers in Pharmacology, 2018, 9, 1031.	3.5	15
33	MicroRNAâ€708 modulates Hepatic Stellate Cells activation and enhances extracellular matrix accumulation via direct targeting TMEM88. Journal of Cellular and Molecular Medicine, 2020, 24, 7127-7140.	3.6	15
34	DNMT3b-mediated methylation of ZSWIM3 enhances inflammation in alcohol-induced liver injury via regulating TRAF2-mediated NF-κB pathway. Clinical Science, 2020, 134, 1935-1956.	4.3	14
35	Design, synthesis and investigation of potential anti-inflammatory activity of O-alkyl and O-benzyl hesperetin derivatives. International Immunopharmacology, 2018, 61, 82-91.	3.8	12
36	DNMT3a-mediated methylation of PSTPIP2 enhances inflammation in alcohol-induced liver injury via regulating STAT1 and NF-κB pathway. Pharmacological Research, 2022, 177, 106125.	7.1	10

#	Article	IF	CITATIONS
37	LncRNA MEG3 reverses CCl4-induced liver fibrosis by targeting NLRC5. European Journal of Pharmacology, 2021, 911, 174462.	3.5	9
38	STINGâ€mediated inflammation contributes to Gao binge ethanol feeding model. Journal of Cellular Physiology, 2022, 237, 1471-1485.	4.1	9
39	3-B-RUT, a derivative of RUT, protected against alcohol-induced liver injury by attenuating inflammation and oxidative stress. International Immunopharmacology, 2021, 95, 107471.	3.8	8
40	Emerging therapeutic potential of adeno-associated virus-mediated gene therapy in liver fibrosis. Molecular Therapy - Methods and Clinical Development, 2022, 26, 191-206.	4.1	8
41	Arrb2 causes hepatic lipid metabolism disorder via AMPK pathway based on metabolomics in alcoholic fatty liver. Clinical Science, 2021, 135, 1213-1232.	4.3	7
42	The miRâ€455â€3p/HDAC2 axis plays a pivotal role in the progression and reversal of liver fibrosis and is regulated by epigenetics. FASEB Journal, 2021, 35, e21700.	0.5	7
43	7-O-(2- (Propylamino)-2-oxoethyl) hesperetin attenuates inflammation and protects against alcoholic liver injury by NLRP12. International Immunopharmacology, 2022, 110, 109006.	3.8	7
44	PLCL1 regulates fibroblast-like synoviocytes inflammation via NLRP3 inflammasomes in rheumatoid arthritis. Advances in Rheumatology, 2022, 62, .	1.7	4