Xiuxuan Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12170171/publications.pdf

Version: 2024-02-01

	759233	1125743
639	12	13
citations	h-index	g-index
1.0	1.0	0.1.0
13	13	910
docs citations	times ranked	citing authors
	citations 13	639 12 citations h-index 13 13

#	Article	IF	CITATIONS
1	ZIF-67@Cellulose nanofiber hybrid membrane with controlled porosity for use as Li-ion battery separator. Journal of Energy Chemistry, 2021, 52, 170-180.	12.9	98
2	Comparative performance of bio-based coatings formulated with cellulose, chitin, and chitosan nanomaterials suitable for fruit preservation. Carbohydrate Polymers, 2021, 259, 117764.	10.2	38
3	Zeolitic imidazolate framework-cellulose nanofiber hybrid membrane as Li-lon battery separator: Basic membrane property and battery performance. Journal of Power Sources, 2020, 454, 227878.	7.8	40
4	Influence of Cellulose Nanoparticles on Rheological Behavior of Oil Well Cement-Water Slurries. Materials, 2019, 12, 291.	2.9	24
5	Interfacial modification mechanism of nanocellulose as a compatibilizer for immiscible binary poly(vinyl alcohol)/poly(ethylene oxide) blends. Journal of Applied Polymer Science, 2018, 135, 45896.	2.6	14
6	Nanocellulose films with combined cellulose nanofibers and nanocrystals: tailored thermal, optical and mechanical properties. Cellulose, 2018, 25, 1103-1115.	4.9	85
7	A comparative study of different nanoclay-reinforced cellulose nanofibril biocomposites with enhanced thermal and mechanical properties. Composite Interfaces, 2018, 25, 301-315.	2.3	7
8	Surface wetting behavior of nanocellulose-based composite films. Cellulose, 2018, 25, 5071-5087.	4.9	27
9	Rheology, curing temperature and mechanical performance of oil well cement: Combined effect of cellulose nanofibers and graphene nano-platelets. Materials and Design, 2017, 114, 92-101.	7. O	83
10	Cellulose Nanofibers as a Modifier for Rheology, Curing and Mechanical Performance of Oil Well Cement. Scientific Reports, 2016, 6, 31654.	3.3	59
11	Poly(diallyldimethylammonium chloride)–cellulose nanocrystals supported Au nanoparticles for nonenzymatic glucose sensing. RSC Advances, 2016, 6, 6436-6442.	3.6	38
12	Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose, 2015, 22, 1123-1133.	4.9	108
13	Synthesis and photovoltaic properties of novel 3,4-ethylenedithiathiophene-based copolymers for organic solar cells. Polymer Chemistry, 2013, 4, 1317.	3.9	18