Xiuxuan Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12170171/publications.pdf Version: 2024-02-01

XILIVILAN SUM

#	Article	IF	CITATIONS
1	Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose, 2015, 22, 1123-1133.	4.9	108
2	ZIF-67@Cellulose nanofiber hybrid membrane with controlled porosity for use as Li-ion battery separator. Journal of Energy Chemistry, 2021, 52, 170-180.	12.9	98
3	Nanocellulose films with combined cellulose nanofibers and nanocrystals: tailored thermal, optical and mechanical properties. Cellulose, 2018, 25, 1103-1115.	4.9	85
4	Rheology, curing temperature and mechanical performance of oil well cement: Combined effect of cellulose nanofibers and graphene nano-platelets. Materials and Design, 2017, 114, 92-101.	7.0	83
5	Cellulose Nanofibers as a Modifier for Rheology, Curing and Mechanical Performance of Oil Well Cement. Scientific Reports, 2016, 6, 31654.	3.3	59
6	Zeolitic imidazolate framework-cellulose nanofiber hybrid membrane as Li-Ion battery separator: Basic membrane property and battery performance. Journal of Power Sources, 2020, 454, 227878.	7.8	40
7	Poly(diallyldimethylammonium chloride)–cellulose nanocrystals supported Au nanoparticles for nonenzymatic glucose sensing. RSC Advances, 2016, 6, 6436-6442.	3.6	38
8	Comparative performance of bio-based coatings formulated with cellulose, chitin, and chitosan nanomaterials suitable for fruit preservation. Carbohydrate Polymers, 2021, 259, 117764.	10.2	38
9	Surface wetting behavior of nanocellulose-based composite films. Cellulose, 2018, 25, 5071-5087.	4.9	27
10	Influence of Cellulose Nanoparticles on Rheological Behavior of Oil Well Cement-Water Slurries. Materials, 2019, 12, 291.	2.9	24
11	Synthesis and photovoltaic properties of novel 3,4-ethylenedithiathiophene-based copolymers for organic solar cells. Polymer Chemistry, 2013, 4, 1317.	3.9	18
12	Interfacial modification mechanism of nanocellulose as a compatibilizer for immiscible binary poly(vinyl alcohol)/poly(ethylene oxide) blends. Journal of Applied Polymer Science, 2018, 135, 45896.	2.6	14
13	A comparative study of different nanoclay-reinforced cellulose nanofibril biocomposites with enhanced thermal and mechanical properties. Composite Interfaces, 2018, 25, 301-315.	2.3	7