Roman K Truckenmüller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1216918/publications.pdf

Version: 2024-02-01

54 papers

2,217 citations

346980 22 h-index 263392 45 g-index

55 all docs 55 docs citations

55 times ranked 3575 citing authors

#	Article	IF	Citations
1	The Galapagos Chip Platform for Highâ€Throughput Screening of Cell Adhesive Chemical Micropatterns. Small, 2022, 18, e2105704.	5.2	4
2	Challenges to, and prospects for, reverse engineering the gastrointestinal tract using organoids. Trends in Biotechnology, 2022, 40, 932-944.	4.9	12
3	Polystyrene Pocket Lithography: Sculpting Plastic with Light. Advanced Materials, 2022, 34, e2200687.	11.1	3
4	Reversing Epithelial Polarity in Pluripotent Stem Cell-Derived Intestinal Organoids. Frontiers in Bioengineering and Biotechnology, 2022, 10, 879024.	2.0	16
5	3D Lung-on-Chip Model Based on Biomimetically Microcurved Culture Membranes. ACS Biomaterials Science and Engineering, 2022, 8, 2684-2699.	2.6	27
6	Assessment of Cell–Material Interactions in Three Dimensions through Dispersed Coaggregation of Microsized Biomaterials into Tissue Spheroids. Small, 2022, 18, .	5.2	7
7	3D alveolar in vitro model based on epithelialized biomimetically curved culture membranes. Biomaterials, 2021, 266, 120436.	5.7	29
8	Measurement of Biomimetic Deposition of Calcium Phosphate in Real Time Using Complex Capacitance. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000672.	0.8	2
9	Development of an In Vitro Airway Epithelial–Endothelial Cell Culture Model on a Flexible Porous Poly(Trimethylene Carbonate) Membrane Based on Calu-3 Airway Epithelial Cells and Lung Microvascular Endothelial Cells. Membranes, 2021, 11, 197.	1.4	13
10	Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Advanced Healthcare Materials, 2021, 10, e2100371.	3.9	11
11	Ten steps to investigate a cellular system with mathematical modeling. PLoS Computational Biology, 2021, 17, e1008921.	1.5	5
12	Biodegradable Elastic Sponge from Nanofibrous Biphasic Calcium Phosphate Ceramic as an Advanced Material for Regenerative Medicine. Advanced Functional Materials, 2021, 31, 2102911.	7.8	15
13	Mechanical Properties of Bioengineered Corneal Stroma. Advanced Healthcare Materials, 2021, 10, e2100972.	3.9	21
14	The Influence of OAT1 Density and Functionality on Indoxyl Sulfate Transport in the Human Proximal Tubule: An Integrated Computational and In Vitro Study. Toxins, 2021, 13, 674.	1.5	1
15	Modeling indoxyl sulfate transport in a bioartificial kidney: Two-step binding kinetics or lumped parameters model for uremic toxin clearance?. Computers in Biology and Medicine, 2021, 138, 104912.	3.9	1
16	Nanoscale Topographies for Corneal Endothelial Regeneration. Applied Sciences (Switzerland), 2021, 11, 827.	1.3	7
17	Thin fluorinated polymer film microcavity arrays for 3D cell culture and label-free automated feature extraction. Biomaterials Science, 2021, 9, 7838-7850.	2.6	2
18	Mechanistic Computational Models of Epithelial Cell Transporters-the Adorned Heroes of Pharmacokinetics. Frontiers in Pharmacology, 2021, 12, 780620.	1.6	4

#	Article	IF	CITATIONS
19	Development of Porous and Flexible PTMC Membranes for In Vitro Organ Models Fabricated by Evaporation-Induced Phase Separation. Membranes, 2020, 10, 330.	1.4	12
20	A Oneâ€Step Biofunctionalization Strategy of Electrospun Scaffolds Enables Spatially Selective Presentation of Biological Cues. Advanced Materials Technologies, 2020, 5, 2000269.	3.0	3
21	Intestinal Organoid Culture in Polymer Filmâ€Based Microwell Arrays. Advanced Biology, 2020, 4, e2000126.	3.0	22
22	A New Microengineered Platform for 4D Tracking of Single Cells in a Stemâ€Cellâ€Based In Vitro Morphogenesis Model. Advanced Materials, 2020, 32, e1907966.	11.1	10
23	Singleâ€Cell Tracking: A New Microengineered Platform for 4D Tracking of Single Cells in a Stemâ€Cellâ€Based In Vitro Morphogenesis Model (Adv. Mater. 24/2020). Advanced Materials, 2020, 32, 2070182.	11.1	O
24	In vitro modelling of alveolar repair at the air-liquid interface using alveolar epithelial cells derived from human induced pluripotent stem cells. Scientific Reports, 2020, 10, 5499.	1.6	35
25	Biomaterials and Microfluidics for Drug Discovery and Development. Advances in Experimental Medicine and Biology, 2020, 1230, 121-135.	0.8	8
26	Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine. Science Advances, 2019, 5, eaaw1317.	4.7	143
27	From fiber curls to mesh waves: a platform for the fabrication of hierarchically structured nanofibers mimicking natural tissue formation. Nanoscale, 2019, 11, 14312-14321.	2.8	10
28	A Microcavity Array-Based 3D Model System of the Hematopoietic Stem Cell Niche. Methods in Molecular Biology, 2019, 2017, 85-95.	0.4	6
29	Overlooked? Underestimated? Effects of Substrate Curvature on Cell Behavior. Trends in Biotechnology, 2019, 37, 838-854.	4.9	107
30	Grow with the Flow: When Morphogenesis Meets Microfluidics. Advanced Materials, 2019, 31, e1805764.	11.1	42
31	Blastocyst-like structures generated solely from stem cells. Nature, 2018, 557, 106-111.	13.7	366
32	3D screening device for the evaluation of cell response to different electrospun microtopographies. Acta Biomaterialia, 2017, 55, 310-322.	4.1	16
33	Micro-fabricated scaffolds lead to efficient remission of diabetes in mice. Biomaterials, 2017, 135, 10-22.	5.7	33
34	TopoWellPlate: A Wellâ€Plateâ€Based Screening Platform to Study Cell–Surface Topography Interactions. Advanced Biology, 2017, 1, e1700002.	3.0	16
35	Linking the Transcriptional Landscape of Bone Induction to Biomaterial Design Parameters. Advanced Materials, 2017, 29, 1603259.	11.1	34
36	High-definition micropatterning method for hard, stiff and brittle polymers. Materials Science and Engineering C, 2017, 71, 558-564.	3.8	26

#	Article	IF	CITATIONS
37	Controlling Growth and Osteogenic Differentiation of Osteoblasts on Microgrooved Polystyrene Surfaces. PLoS ONE, 2016, 11, e0161466.	1.1	33
38	Directed Assembly and Development of Materialâ€Free Tissues with Complex Architectures. Advanced Materials, 2016, 28, 4032-4039.	11,1	54
39	Regeneration of the lung: Lung stem cells and the development of lung mimicking devices. Respiratory Research, 2016, 17, 44.	1.4	86
40	Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCs. Acta Biomaterialia, 2016, 42, 364-377.	4.1	32
41	Development of Highly Functional Biomaterials by Decoupling and Recombining Material Properties. Advanced Materials, 2016, 28, 1803-1808.	11.1	17
42	Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology. Acta Biomaterialia, 2015, 15, 29-38.	4.1	61
43	Biofunctional Micropatterning of Thermoformed 3D Substrates. Advanced Functional Materials, 2014, 24, 442-450.	7.8	19
44	Engineered Microâ€Objects as Scaffolding Elements in Cellular Building Blocks for Bottomâ€Up Tissue Engineering Approaches. Advanced Materials, 2014, 26, 2592-2599.	11,1	78
45	Effect of tissue scaffold topography on protein structure monitored by fluorescence spectroscopy. Journal of Biotechnology, 2014, 189, 166-174.	1.9	5
46	A Fast Process for Imprinting Micro and Nano Patterns on Electrospun Fiber Meshes at Physiological Temperatures. Small, 2013, 9, 3405-3409.	5.2	42
47	Electrospinning: A Fast Process for Imprinting Micro and Nano Patterns on Electrospun Fiber Meshes at Physiological Temperatures (Small 20/2013). Small, 2013, 9, 3544-3544.	5. 2	1
48	Microwell Scaffolds for the Extrahepatic Transplantation of Islets of Langerhans. PLoS ONE, 2013, 8, e64772.	1.1	56
49	3D Nanofabrication: 3D Nanofabrication of Fluidic Components by Corner Lithography (Small 24/2012). Small, 2012, 8, 3702-3702.	5.2	2
50	Fabrication of cell container arrays with overlaid surface topographies. Biomedical Microdevices, 2012, 14, 95-107.	1.4	40
51	Thermoforming of Filmâ€Based Biomedical Microdevices. Advanced Materials, 2011, 23, 1311-1329.	11.1	98
52	An algorithm-based topographical biomaterials library to instruct cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16565-16570.	3.3	355
53	Flexible fluidic microchips based on thermoformed and locally modified thin polymer films. Lab on A Chip, 2008, 8, 1570.	3.1	69
54	3D tissue culture substrates produced by microthermoforming of pre-processed polymer films. Biomedical Microdevices, 2006, 8, 191-199.	1.4	100